

Concepteur Epreuves ESC: ESC SAINT ETIENNE

<u>CODE EPREUVE</u>: 292 ESC_MATS

OPTION SCIENTIFIQUE

MATHEMATIQUES

mardi 16 Mai 2006, de 14 h. à 18 h.

N.B.

Il n'est fait usage d'aucun document ; l'utilisation de toute calculatrice et de tout matériel électronique est interdite.

Seule l'utilisation d'une règle graduée est autorisée.

EXERCICE 1

Les questions 2, 3 et 4 sont indépendantes de la question 1.

On considère la matrice $H = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$ et l'endomorphisme h de \mathbb{R}^3 représenté par la matrice H

relativement à la base canonique de ${\it I\!R}^3$. On note également $\lambda_1=1-\sqrt{2}$ et $\ \lambda_2=1+\sqrt{2}$.

1. (a) Montrer que pour tout entier nature n, il existe deux réels a_n et b_n tels que

$$H^n = \begin{pmatrix} a_n & 0 & b_n \\ 0 & (-2)^n & 0 \\ b_n & 0 & a_n + 2b_n \end{pmatrix} \text{ et exprimer } a_{n+1} \text{ et } b_{n+1} \text{ en fonction de } a_n \text{ et } b_n \text{ .}$$

- (b) Pour tout entier naturel n, exprimer b_{n+2} en fonction de b_{n+1} et b_n , puis en déduire b_n en fonction de n, λ_1 et λ_2 .
- (c) Pour tout entier naturel non nul n, exprimer a_n en fonction de n, λ_1 et λ_2 .
- 2. (a) Montrer que H est diagonalisable.
 - (b) Montrer par la méthode du pivot que les valeurs propres de H sont -2, λ_1 et λ_2 .
 - (c) Déterminer une base de \mathbb{R}^3 formée de vecteurs propres de h.

 Justifier que cette base est orthogonale pour le produit scalaire canonique de \mathbb{R}^3 .
- 3. On considère ici l'application $q: \mathbb{R}^3 \to \mathbb{R}$

$$(x, y, z) \mapsto {}^{t}X H X \text{ où } X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

- (a) Justifier que q est une forme quadratique et exprimer q((x, y, z)) en fonction de x, y, z.
- (b) Que peut-on dire du signe de q? Justifier sa réponse.
- 4. On considère le sous-ensemble D de \mathbb{R}^3 défini par $D = \mathbb{R} \times \mathbb{R} \times]-1; +\infty[$, ainsi que la fonction f définie sur D par : $f((x, y, z)) = x \ln(1 + z) + (y 1)^2(z 1) + 2z$.
 - (a) Montrer que f est de classe C^2 sur D.
 - (b) Calculer les dérivées partielles d'ordre 1 de f. Montrer que f ne présente qu'un point critique M_0 .
 - (c) Calculer les dérivées partielles d'ordre 2 de f. En déduire la Hessienne de f au point M_0 .
 - (d) Le point M_0 est-il un maximum , un minimum , ou un point col pour f ?

EXERCICE 2

On considère un réel $\alpha > 0$ et la suite $(u_n)_{n \ge 2}$ définie par : $u_n = \frac{1}{n \ln^{\alpha + 1}(n)}$.

On note, pour tout entier n supérieur ou égal à 2, $S_n = \sum_{k=2}^n u_k$.

- 1. Soit la fonction f définie sur $I = \left[1 \right] + \infty \left[\text{ par } f(x) = -\frac{1}{\alpha \ln^{\alpha}(x)} \right]$
 - (a) Montrer que f est de classe C^2 sur I et calculer sa dérivée f'. Montrer que f est concave sur I.
 - (b) Etudier la nature et la valeur éventuelle de l'intégrale impropre $\int_2^{+\infty} \frac{1}{t \ln^{\alpha+1}(t)} dt$. En déduire la nature de la série de terme général u_n .
 - (c) Soit un entier $k \ge 2$. Montrer que pour tout réel $t \in [k; k+1]$, $u_{k+1} \le f'(t)$.
 - (d) En déduire que pour tout entier k supérieur ou égal à 2, $u_{k+1} \le \frac{1}{\alpha \ln^{\alpha}(k)} \frac{1}{\alpha \ln^{\alpha}(k+1)}$.

Dans toute la suite, on note $L = \sum_{k=2}^{+\infty} u_k$ et pour tout entier n supérieur ou égal à $2: R_n = \sum_{k=n+1}^{+\infty} u_k$.

- 2. (a) Justifier l'existence de R_n . Exprimer R_n à l'aide de L et S_n .
 - (b) Soit p et n deux entiers tels que $2 \le n < p$:

 Montrer grâce au 1.d. que : $\sum_{k=n+1}^{p} u_k \le \frac{1}{\alpha \ln^{\alpha}(n)} \frac{1}{\alpha \ln^{\alpha}(p)}.$
 - (c) En déduire que pour tout entier *n* supérieur ou égal à 2 : $0 \le L S_n \le \frac{1}{\alpha \ln^{\alpha}(n)}$.
- 3. (a) Montrer que $\frac{1}{\alpha \ln^{\alpha}(n)} \le \varepsilon \iff n \ge \exp((\alpha \varepsilon)^{-\frac{1}{\alpha}})$.
 - (b) Compléter les parties pointillées du programme Turbo-Pascal suivant afin qu'il demande deux réels strictement positifs α et ϵ et affiche un entier naturel n et une somme partielle S_n tels que l'écart entre S_n et L soit inférieur à ϵ : (on rappelle que **trunc** est la fonction partie entière).

program esc2006;

var

(c) On suppose que les valeurs $\alpha = 10$ et $\epsilon = 10^{-6}$ ont été entrées. Y aura-t-il une erreur dûe à un débordement à l'exécution de ce programme? (on prendra 2^{15} comme plus grand entier possible pour le type **integer** et on donne $\ln(2) \approx 0.69$)

EXERCICE 3

Le préliminaire n'est utilisé qu'en 2(e) et 2(f). Toutes les variables aléatoires sont définies sur le même espace probabilisé (Ω, \mathcal{F}, P).

1. Préliminaire:

Soit $(Y_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires admettant une espérance $E(Y_n)$ et une variance $V(Y_n)$. On suppose en outre que $\lim_{n \to +\infty} E(Y_n) = m$ et que $\lim_{n \to +\infty} V(Y_n) = 0$. (m étant une constante réelle).

- (a) Montrer que $E((Y_n m)^2) = V(Y_n) + (E(Y_n) m)^2$.
- (b) En déduire par inégalité de Markov que pour tout $\varepsilon > 0$, $P(|Y_n m| \ge \varepsilon) \le \frac{V(Y_n) + (E(Y_n) m)^2}{\varepsilon^2}$.
- (c) Montrer alors que $(Y_n)_{n \in \mathbb{N}^*}$ converge en probabilité vers la variable certaine égale à m.

Dans la suite de cet exercice on considère une suite $(X_i)_{i\in I\!\!N}$ de variables indépendantes et de même loi . Pour tout entier naturel non nul n, on note M_n la variable aléatoire définie sur Ω par $M_n(\omega) = \max_{1\leq i\leq n} X_i(\omega)$. (M_n prend donc pour valeur la plus grande des valeurs prises par X_1 , X_2 , \cdots , X_n et on remarque que $M_1 = X_1$).

- 2. On suppose ici que les variables $(X_i)_{i \in \mathbb{N}^*}$ suivent la loi de Bernoulli de paramètre $p \in]0;1[$. On note q=1-p.
 - (a) Montrer que $(M_2 = 0) = ((X_1 = 0) \cap (X_2 = 0))$ et en déduire la loi de M_2 .
 - (b) Montrer plus généralement que M_n suit une loi de Bernoulli de paramètre $1 q^n$.
 - (c) Soient r et s deux entiers tels que $1 \le r < s$. Montrer que si $(M_r = 1)$ alors $(M_s = 1)$. En déduire $E(M_r M_s) = 1 q^r$, puis calculer la covariance $cov(M_r, M_s)$.
 - (d) Donner la matrice de variance-covariance des variables (M_1 , M_2 , \cdots , M_n) .
 - (e) Déduire du préliminaire que $(M_n)_{n\in\mathbb{N}}$ converge en probabilité vers la variable certaine égale à 1.
 - (f) Montrer que $(n(1-M_n))_{n\in\mathbb{N}^*}$ converge en probabilité vers la variable certaine égale à 0.
- 3. On suppose ici que les variables $(X_i)_{i \in IV}$ sont des variables à densité indépendantes, de loi uniforme sur [0;1].
 - (a) Rappeler la fonction de répartition d'une loi uniforme sur [0;1].
 - (b) En déduire que pour tout réel x de [0;1], $P(M_n \le x) = x^n$. Montrer que M_n est une variable à densité.
 - (c) Soit ε un réel de]0;1]. Calculer $P(|M_n-1| \le \varepsilon)$.
 - (d) En déduire que $(M_n)_{n \in \mathbb{N}^*}$ converge en probabilité vers la variable certaine égale à 1.
 - (e) Soit α un réel positif.
 - e1. Soit n un entier strictement supérieur à α .

 Montrer que $P(n(1-M_n) \le \alpha) = 1 (1-\frac{\alpha}{n})^n$.
 - e2. Montrer que $\lim_{n\to+\infty} (1-\frac{\alpha}{n})^n = e^{-\alpha}$.
 - e3. En déduire que $(n(1-M_n))_{n\in\mathbb{N}^*}$ converge en loi vers une variable qui suit une loi exponentielle de paramètre 1.