

Epreuve de Mathématiques I-B

Durée 4 h

Question préliminaire

Enoncer une condition nécessaire et suffisante pour qu'une matrice carrée à coefficients réels soit diagonalisable dans \mathbb{R} .

Partie I: Algorithme de Babylone

On considère les suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par $u_0=v_0=1$ et la formule de récurrence:

$$\forall n \in \mathbb{N}, \quad \left\{ \begin{array}{l} u_{n+1} = u_n + 2v_n, \\ v_{n+1} = u_n + v_n. \end{array} \right.$$

Pour tout $n \in \mathbb{N}$, on pose $\rho_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$.

- 1. Déterminer l'unique matrice A telle que l'on ait, pour tout $n \in \mathbb{N}$, la relation: $\rho_{n+1} = A \rho_n$.
- 2. Quelles sont les valeurs propres de A? La matrice A est-elle diagonalisable dans \mathbb{R} ?
- 3. Montrer que u_n et v_n sont strictement positifs pour tout entier n.
- 4. Montrer que, pour tout $n \in \mathbb{N}$, on a les deux inégalités:

$$\frac{u_n}{v_n} \ge 1$$
, et $\left| \frac{u_{n+1}}{v_{n+1}} - \sqrt{2} \right| < \frac{1}{2} \left| \frac{u_n}{v_n} - \sqrt{2} \right|$.

1

- 5. La suite $\left(\frac{u_n}{v_n}\right)_{n\in\mathbb{N}}$ a-t-elle une limite ? Quelle est cette limite ?
- 6. Proposer une méthode d'approximation de $\sqrt{2}$ à 10^{-2} près, puis à 10^{-4} près.

Partie II: Etude d'une réaction chimique

L'hydrogène et l'oxygène réagissent suivant la formule

$$2H_2 + O_2 \longrightarrow 2H_2O$$
.

En fait, cette réaction est le résultat de la combinaisons de plusieurs réactions faisant intervenir notamment les radicaux H^+ , O^{2-} et OH^- . Pour simplifier l'étude, on suppose que seules les trois réactions suivantes ont lieu:

$$O^{2-} + H_2 \longrightarrow OH^- + H^+,$$

 $OH^- + H_2 \longrightarrow H_2O + H^+,$
 $H^+ + O_2 \longrightarrow OH^- + O^{2-}.$

On suppose aussi que ces trois réactions sont simultanées et ont la même vitesse. On prend comme unité de temps la durée commune de ces trois réactions. On part à l'instant n=0 d'un seul radical O^{2-} , d'aucun radical H^+ , d'aucun radical OH^- , et d'un nombre illimité de molécules d'hydrogène (H_2) et d'oxygène (O_2) .

A l'instant n = 1, il n'y a plus de radical O^{2-} et il a été produit un radical OH^- et un radical H^+ . On note o_n , $(oh)_n$ et h_n le nombre de radicaux O^{2-} , OH^- et H^+ présents à l'instant n.

A l'instant n+1, on suppose que tous les radicaux qui étaient présents à l'instant n ont réagi selon les trois réactions écrites. Ainsi o_{n+1} , $(oh)_{n+1}$ et h_{n+1} désignent aussi le nombre de radicaux O^{2-} , OH^- et H^+ créés entre l'instant n et l'instant n+1.

On pose
$$\rho_n = \begin{pmatrix} o_n \\ (oh)_n \\ h_n \end{pmatrix}$$
.

- 1. Calculer $\rho_0,\,\rho_1$ et $\rho_2.$ Vérifier que ρ_3 est égal à $\left(\begin{array}{c}1\\2\\2\end{array}\right)$.
- 2. Déterminer l'unique matrice A telle que, pour tout $n \in \mathbb{N}$, on ait: $\rho_{n+1} = A \rho_n$.
- 3. Montrer que o_n peut être écrit, pour tout $n \geq 0$, sous la forme:

$$o_n = \alpha \ (-1)^n + \beta \ \left(\frac{1-\sqrt{5}}{2}\right)^n + \gamma \ \left(\frac{1+\sqrt{5}}{2}\right)^n,$$

où α , β et γ sont des constantes réelles.

- 4. Montrer que γ n'est pas nulle. Quel est son signe?
- 5. La suite $(o_n)_{n\in\mathbb{N}}$ admet-elle une limite? Si oui, préciser laquelle.

Partie III: Diffusion d'un gaz

Dans toute cette partie, nous considérons la matrice

$$A = \begin{pmatrix} 1/3 & 1/2 & 0 & 0 \\ 1/2 & 1/3 & 0 & 0 \\ 1/6 & 0 & 1 & 0 \\ 0 & 1/6 & 0 & 1 \end{pmatrix}.$$

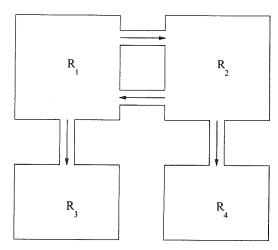
1. Nous dirons qu'une suite de matrices $(B_n = (b_{ij}(n)))_{n \in \mathbb{N}}$ à coefficients réels converge vers une matrice $B = (b_{ij})$ si, pour tous i et j fixés, chaque suite réelle $(b_{ij}(n))_{n \in \mathbb{N}}$ converge vers b_{ij} quand n tend vers $+\infty$.

Soit P une matrice. Montrer que si $(B_n)_{n\in\mathbb{N}}$ converge vers B, alors $(PB_n)_{n\in\mathbb{N}}$ converge vers PB et $(B_nP)_{n\in\mathbb{N}}$ converge vers BP.

- 2. On note $Q=\begin{pmatrix}1/3&1/2\\1/2&1/3\end{pmatrix},\ I=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ et $R=\frac{1}{6}I.$ Montrer que $\lim_{n\to\infty}Q^n$ égale 0.
- 3. Sans calculer $(I-Q)^{-1}$, montrer que I-Q est inversible puis démontrer la relation suivante:

$$\lim_{n \to \infty} (I + Q + Q^2 + \dots + Q^n) = (I - Q)^{-1}.$$

- 4. Calculer $\lim_{n\to\infty} A^n$.
- 5. Le schéma ci-dessous représente quatre réservoirs R_1 , R_2 , R_3 et R_4 contenant un même gaz.



Les "tuyaux" reliant les différents réservoirs schématisent en fait des membranes semi-perméables qui ne laissent passer le gaz que dans le sens indiqué par la flèche.

Après une heure de fonctionnement, on constate que la moitié du gaz initialement contenu dans R_1 est passé de R_1 à R_2 et qu'un sixième du gaz initialement contenu dans R_1 s'est écoulé dans R_3 . De même, la moitié du gaz initialement contenu dans R_2 est passé dans R_1 et un sixième du gaz initialement contenu dans R_2 s'est écoulé dans R_4 .

On introduit à l'instant t=0 un litre de gaz dans le réservoir R_1 et on laisse le système évoluer librement pendant un temps infini. La répartition du gaz dans les réservoirs a-t-elle une limite? Quelle est cette limite?

3

Partie IV: Un cas plus général

Dans cette partie, on fixe une base de \mathbb{R}^d , d>1. On convient de noter de la même façon un vecteur de \mathbb{R}^d et la matrice colonne à d lignes associée à ce vecteur. Pour toute matrice M, on note tM la matrice transposée. On désigne par A une matrice carrée d'ordre d à coefficients réels.

- 1. Montrer que si λ est valeur propre de A, alors λ est aussi valeur propre de tA .
- 2. Soit x un vecteur propre de A associé à la valeur propre λ et soit y un vecteur propre de tA associé à la valeur propre μ . Montrer, pour λ et μ distincts, la relation ty x=0. Indication: on pourra calculer de deux façons différentes la quantité ty A x.
- 3. On suppose désormais que A possède d valeurs propres distinctes notées $\lambda_1, \lambda_2, \ldots, \lambda_d$ et vérifiant $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_d|$.

On note x_i un vecteur propre de A associé à la valeur propre λ_i et y_i un vecteur propre de tA associé à cette même valeur propre.

- (a) Montrer que $(x, y) \mapsto {}^t y x$ définit un produit scalaire sur \mathbb{R}^d .
- (b) Montrer que la famille (x_1, \ldots, x_d) est une base de \mathbb{R}^d .
- (c) En déduire que l'on peut choisir la famille (y_1, \ldots, y_d) de sorte que $^ty_i x_i = 1$ pour tout $i, 1 \le i \le d$.

Dans toute la suite, on supposera que ce choix a été fait.

- 4. Pour tout $i, 1 \leq i \leq d$, on définit la matrice carrée A_i d'ordre d par $A_i = x_i^t y_i$. Montrer que, pour $i \neq j$, la matrice $A_i A_j$ est la matrice nulle et que pour tout $i, 1 \leq i \leq d$, on a la relation $A_i^2 = A_i$.
- 5. On note I la matrice identité d'ordre d. Montrer les deux relations: $\sum_{i=1}^{d} A_i = I$, $\sum_{i=1}^{d} \lambda_i A_i = A$. Indication: on rappelle que (x_1, \dots, x_d) est une base de \mathbb{R}^d .
- 6. Calculer A^n en fonction des A_i .
- 7. Calculer $\lim_{n\to\infty} \frac{1}{\lambda_1^n} A^n$.
- 8. Dans quels cas la suite de matrices $(A^n)_{n\in\mathbb{N}}$ converge-t-elle? Calculer alors $\lim_{n\to\infty}A^n$.
- 9. Retrouver, à l'aide de ces résultats, certains des résultats des parties I et II.

Partie V: Etude d'une population

Une certaine espèce d'insectes se comporte de la manière suivante :

- la moitié des insectes meurent dans leur première année,
- chaque survivant à cette première année donne naissance à un descendant au cours de sa seconde année,
- un quart de ces survivants atteignent la troisième année,
- chaque insecte ayant atteint la troisième année donne naissance à un descendant au cours de cette troisième année,
- aucun insecte ne vit plus de trois ans.

On part d'une population comportant 1000 insectes de première année, 1000 de seconde année et 1000 de troisième année. On note a_n , b_n , c_n le nombre d'insectes respectivement de première, de seconde et de troisième année après n années. Pouvez-vous étudier, à l'aide des résultats de la partie IV, l'effectif de la population quand n tend vers l'infini?