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Si, au cours de l’épreuve, un candidat repère ce qui lui semble être une erreur d’énoncé, il le signale
sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu’il est amené à prendre.

L’épreuve comporte deux problèmes complètement indépendants.

Problème I

Soit f une fonction à valeurs réelles ou complexes, définie dans un ouvert U du plan R2, deux fois
continûment dérivable ; le laplacien de la fonction f est, par définition, la fonction, notée ∆f , définie
dans l’ouvert U par la relation suivante :

∆f (x, y) =
∂2f

∂x2
(x, y) +

∂2f

∂y2
(x, y) .

Une fonction f à valeurs réelles ou complexes, définie dans un ouvert U du plan R2, deux fois con-
tinûment dérivable, est harmonique dans U si et seulement si son laplacien est nul dans U :

∆f (x, y) =
∂2f

∂x2
(x, y) +

∂2f

∂y2
(x, y) = 0.

Exemple : en électrostatique, le potentiel électrique dans le vide est harmonique.
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Le but du problème est de donner des exemples de telles fonctions puis de démontrer certaines pro-
priétés de ces fonctions : le principe du maximum, la propriété de moyenne, le fait que les fonctions
bornées harmoniques dans tout le plan sont constantes.

Le plan R2 est supposé muni de la norme euclidienne.
Quelques exemples de fonctions harmoniques :
1. Démontrer que les fonctions complexes f et gn, n ∈ N, définies dans le plan R2 par les relations

ci-dessous, sont harmoniques :

f (x, y) = ex + i y, gn (x, y) = (x+ i y)n
.

2. Déterminer les fonctions u réelles, de classe C2, définies sur la demi-droite ouverte ]0, ∞[ , telles
que chaque fonction h, définie dans le plan R2 privé du point O

(
R2 \ {O}

)
par la relation ci-dessous,

soit harmonique

h (x, y) = u
(√

x2 + y2
)
.

Poser si nécessaire : r =
√
x2 + y2.

3. Déterminer les fonctions v réelles, de classe C2, définies sur la droite réelle R, telles que chaque
fonction k, définie dans le plan R2 privé de l’axe ýOy

(
R2 \ ýOy

)
par la relation ci-dessous, soit har-

monique.

k (x, y) = v
(y
x

)
.

Soit la suite (un)n∈N de fonctions définies dans tout le plan R2 par les relations suivantes :

un (x, y) = (−1)n (x+ iy)n

(2n)!
.

4. Soit K un ensemble fermé borné quelconque du plan R2 ; démontrer que la restriction un|K de la
fonction un au fermé K est le terme général d’une série de fonctions uniformément convergente.

En déduire que la série de fonctions de terme général un converge en tout point du plan et que sa
somme, la fonction ϕ, définie par la relation suivante

ϕ (x, y) =
∞∑

n=0

un (x, y) ,

est continue dans le plan.

5. Démontrer que cette fonction ϕ est harmonique dans tout le plan R2.

Principe du maximum :
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Soit f une fonction réelle harmonique définie dans tout le plan R2. Soit D le disque fermé de centre
O et de rayon strictement positif r (r > 0) ; soit C le cercle de centre O et de rayon r :

D =
{
(x, y) | x2 + y2 ≤ r2

}
,

C =
{
(x, y) | x2 + y2 = r2

}
.

Étant donné un entier strictement positif p (p > 0) , soit fp la fonction définie dans R2 par la relation
suivante :

fp (x, y) = f (x, y) +
x2 + y2

p
.

6. Démontrer l’existence d’un point Mp de coordonnées ap et bp, appartenant au disque fermé D en
lequel la fonction fp atteint son maximum :

fp (ap, bp) = max
(x,y)∈D

fp (x, y) .

7. Démontrer que, si le point Mp appartient à l’intérieur du disque D, les deux dérivées secondes de
la fonction fp, obtenues en dérivant deux fois par rapport à x ou deux fois par rapport à y, sont, en ce
point Mp, négatives ou nulles :

∂2fp

∂x2
(ap, bp) ≤ 0 ;

∂2fp

∂y2
(ap, bp) ≤ 0.

8. En déduire, en calculant par exemple le laplacien de la fonction fp, que le point Mp est situé sur
le cercle C.

9. Démontrer qu’il existe un point P de coordonnées a et b du cercle C en lequel la fonction f atteint
son maximum sur D :

f (a, b) = max
(x,y)∈D

f (x, y) .

10. En déduire que deux fonctions harmoniques dans le plan R2 égales le long d’un cercle C du plan
(de rayon strictement positif), sont égales dans tout le disque D de frontière C.

Propriété de la moyenne

Soit f une fonction réelle harmonique définie dans le plan R2. Étant donnés un point M0 de coor-
données x0 et y0 et un réel ρ positif ou nul, soit F la fonction définie sur la demi-droite fermée [0,∞[ par
la relation suivante :

F (ρ) =
∫ 2π

0

f (x0 + ρ cos θ, y0 + ρ sin θ) dθ.
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11. Démontrer que la fonction F est définie et continue sur la demi-droite fermée [0,∞[.

12. Démontrer que la fonction F est continûment dérivable. Préciser sa dérivée F (́ρ).

13. Démontrer que le produit ρ.F (́ρ) est égal à la valeur d’une intégrale curviligne d’une forme
différentielle α = A (x, y) dx+B (x, y) dy le long d’un arc orienté Γ :

ρ.F (́ρ) =
∫

Γ

(A (x, y) dx+B (x, y) dy) .

Préciser la forme différentielle α et l’arc orienté Γ.

14. Démontrer que la fonction F est une fonction constante ; préciser sa valeur.

15. Soit D le disque fermé de centre le point M0 de coordonnées (x0, y0) et de rayon r (r > 0)
; démontrer que l’intégrale double I de la fonction f étendue au disque D se calcule simplement en
fonction de f (x0, y0) suivant la relation :

I =
∫∫

D

f (x, y) dx dy = π r2 f (x0, y0) .

Fonctions harmoniques bornées dans le plan :
Soit f une fonction définie dans tout le plan, réelle, harmonique et bornée : il existe donc une constante

C telle qu’en tout point (x, y) du plan :

|f (x, y)| ≤ C.

16. Soient deux disques fermés D1 et D2 de centres, distincts l’un de l’autre, O et M0, de coordonnées
respectives (0, 0) et (x0, y0). Soit r le rayon commun de ces disques. La distance d des centres O et M0

(égale à
√
x2

0 + y2
0) est supposée strictement inférieure au rayon r (0 < d < r). Soit L2 l’ensemble des

points du disque D2 qui ne sont pas dans le disque D1.

En considérant par exemple un disque contenu dans l’intersection des disques D1 et D2, démontrer
que l’aire de L2 est majorée par l’expression π r d.

17. À l’aide par exemple de la question 15, donner un majorant de la valeur absolue de la différence
f (x0, y0)− f (0, 0) au moyen de la constante C, du rayon r et de d.

En déduire que la fonction f est constante.

Problème II

Soit ϕ la fonction définie sur la droite réelle par la relation suivante :

si |t| < 1, ϕ (t) = exp
(

1
t2 − 1

)
; si |t| ≥ 1, ϕ (t) = 0.
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Un difféomorphisme f de la droite réelle R sur elle-même de classe C1 est dit difféomorphisme de
classe C∞ si la fonction f est indéfiniment dérivable.

Un difféomorphisme de R de classe C∞ :
18. Démontrer que la restriction ϕI de la fonction ϕ à l’intervalle ouvert I = ]−1, 1[ est indéfiniment

dérivable et que, pour tout entier n, il existe un polynôme Pn tel que la dérivée ϕ(n)
I de ϕI d’ordre n

s’écrive sous la forme suivante :

ϕ
(n)
I (t) =

Pn (t)
(t2 − 1)2 n exp

(
1

t2 − 1

)
.

19. En déduire que la fonction ϕ est indéfiniment dérivable sur la droite réelle R. Justifier, sans calcul,
l’existence d’un majorant M de la valeur absolue de la dérivée première ϕ́ sur la droite réelle :

M = sup
t ∈ R

|ϕ́ (t)| .

Étant donné un réel λ (λ ∈ R) , soit ψλ la fonction définie sur la droite réelle par la relation suivante :

ψλ (x) = x+ λ ϕ (x) .

20. Démontrer que, si la valeur absolue du réel λ est strictement majorée par 1/M, (|λ| < 1/M), la
fonction ψλ est une bijection de la droite réelle R sur elle-même et un difféomorphisme de classe C∞ de
R.

Quelle est, dans ces conditions (|λ| < 1/M) , l’image du segment I = [−1, 1] par l’application x 7−→
ψλ (x) ? Que dire de la restriction de l’application x 7−→ ψλ (x) aux demi-droites fermées ]−∞,−1] et
[1,∞[ ?

Un difféomorphisme de classe C1 du plan R2, défini par des fonctions indéfiniment dérivables est
appelé difféomorphisme de classe C∞.

Difféomorphismes du plan R2 de classe C∞ :
Le plan R2 est supposé muni de la norme euclidienne et rapporté à un repére orthonormé Oxy.

Étant donnés un réel λ (λ ∈ R) , un réel strictement positif r (r > 0) et un point P du plan R2 de
coordonnées (p, q) , soit θP

λ, r l’application de R2 dans lui-même définie par la relation suivante :

θP
λ, r :

(
x
y

)
7−→

(
x+ λ ϕ

((
(x− p)2 + (y − q)2

)
/r2
)

y

)
.

L’image du point de coordonnées (x, y) par l’application θP
λ, r est le point de coordonnées :
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(
x+ λ ϕ

(
(x− p)2 + (y − q)2

r2

)
, y

)
.

21. Quelle est l’image par cette application θP
λ, r du point P ? du cercle CP

r de centre le point P et de
rayon égal à r ? de l’ouvert ΩP

r des points du plan situé à une distance du point P strictement supérieure
à r ?

Existence de difféomorphismes du plan de classe C∞ :
22. Démontrer qu’il existe un réel m strictement positif tel que, si le réel λ a une valeur absolue

strictement inférieure à m (|λ| < m) , l’application θP
λ, r est une bijection du plan R2 sur lui-même et un

difféomorphisme de classe C∞ de R2.

Soient n points A1, A2, . . . , An du plan R2, deux à deux distincts, et deux points B et B́, distincts
entre eux et distincts des points Ai, 1≤ i ≤ n. Les coordonnées des points Ai, 1≤ i ≤ n, sont (xi, yi) ,
1≤ i ≤ n ; celles de B et B́ respectivement (b, c) et (b́, ć).

Le but des questions 23 à 26 est de montrer qu’il existe un difféomorphisme de classe C∞ du plan
R2 transformant B en B́ et laissant les points A1, A2, . . . , An invariants. Un difféomorphisme de classe
C∞ du plan R2 laissant les points A1, A2, . . . , An invariants est dit avoir la propriété A.

Il est admis que l’ensemble des difféomorphismes de classe C∞ du plan R2 est un groupe pour la loi
de composition des applications.

Trois cas sont envisagés :

1er cas : Les points B et B́ ont même ordonnée ; les ordonnées des points Ai, 1≤ i ≤ n, sont toutes
différentes de celle de B (yi 6= c = ć).

23. Démontrer, dans ce cas, que, si les points B et B́ sont suffisamment proches, il existe une appli-
cation θP

λ, r transformant B en B́ et laissant les Ai, 1≤ i ≤ n invariants.

24. Démontrer, toujours dans ce cas, que, quelle que soit la position des points B et B́, il existe une
suite finie de bijections θPi

λ, r, 0 ≤ i ≤ k, telle que la composée F de ces applications transforme B en B́
et ait la propriété A.

F = θPk
λ, r ◦ θ

Pk−1
λ, r ◦ . . . ◦ θP0

λ, r.

2ième cas : Les points B et B́ ont même abscisse ; les abscisses des points Ai, 1≤ i ≤ n, sont toutes
différentes de celle de B (xi 6= b = b́) .

25. Indiquer comment modifier l’application θP
λ, r en ηP

λ, r pour construire un endomorphisme G
transformant B en B́ et ayant la propriété A.
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3ième cas : Les points B et B́ n’ont plus d’abscisse ou d’ordonnée commune.

26. Établir l’existence d’un difféomorphisme H transformant B en B́ et ayant la propriété A.

Difféomorphisme transformant une suite de n points A1, A2, . . . , An en une suite de n
points Á1, Á2, . . . , Án.

27. Soient deux suites de points, deux à deux distincts, A1, A2, . . . , An et Á1, Á2, . . . , Án du plan
R2. Démontrer qu’il existe un difféomorphisme K de classe C∞ du plan R2, tel que chaque point Ai ait
pour image le point Ái.

FIN DE L’ÉPREUVE
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