Notations

On désigne par $\mathcal{M}_{p,q}(\mathbb{C})$ l'ensemble des matrices à p lignes et q colonnes dont les coefficients sont des nombres complexes. Pour toute matrice $A \in \mathcal{M}_{p,q}(\mathbb{C})$, on note tA la matrice transposée de A, \overline{A} la matrice obtenue en conjuguant tous les coefficients de la matrice A et $\operatorname{rg}(A)$ le rang de A.

On fixe un entier $n \geq 2$ et on considère $V = \mathcal{M}_{n,1}(\mathbb{C})$, $E = \mathcal{M}_{n,n}(\mathbb{C})$ munis des opérations usuelles. Les vecteurs nuls sont notés respectivement 0_V et 0_E . L'espace vectoriel V admet pour base canonique:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Pour $(k,m) \in [\![1,n]\!]^2$ on pose $E_{k,m}=^t e_k e_m$ ce qui donne une matrice à n lignes et n colonnes dont le coefficient d'indice (i,j) vaut 1 si (i,j)=(k,m) et 0 sinon. La base canonique de E est constituée des n^2 matrices $E_{m,k},\ 1\geq k\geq n,\ 1\geq m\geq n$. On note I la matrice identité, $I=\sum_{1\leq k\leq n}E_{k,k}$.

Si A est une matrice élément de E et W un sous-espace vectoriel de V, A(W) désigne l'ensemble $\{Aw, \ w \in W\}$. Si F est un sous-ensemble de E, on dit que W est stable par F si $\forall A \in F, A(W) \subset W$. Pour tout sous-ensemble $\mathcal L$ de E on s'intéresse aux propriétés suivantes :

 $P_1: \mathcal{L}$ contient (au moins) une matrice de rang 1,

 $P_2: \mathcal{L}$ contient (au moins) une matrice de rang n,

 $P_3: \mathcal{L} \text{ contient } I,$

 $P_4: \mathcal{L}$ est un sous-espace vectoriel de E,

 $P_5: \mathcal{L} \text{ est stable par produit de matrices } (A, B \in \mathcal{L} \Longrightarrow AB \in \mathcal{L}),$

 P_6 : si W est un sous-espace vectoriel de V stable par \mathcal{L} , alors soit $W = 0_V$ soit W = V.

Partie I - Étude de quelques exemples

- **I.A** Dans cette section IA, \mathcal{L} est l'ensemble des $A \in E$ qui sont inversibles, soit $\mathcal{L} = GL_n(\mathbb{C})$.
 - 1. Soit x un vecteur non nul de V. Montrer que pour tout vecteur y non nul de V il existe une matrice inversible A telle que Ax = y.

Indication : on peut considérer deux cas :

- (a) la famille (x, y) est liée,
- (b) la famille (x, y) est libre.

En déduire que la propriété P_6 est vérifiée par \mathcal{L} .

- 2. Indiquer celles des propriétés P_1, \ldots, P_5 qui sont vérifiées par \mathcal{L} ; justifier les réponses.
- **I.B** Dans cette section I.B, \mathcal{L} est l'ensemble des matrices $T=(t_{k,m})\in E$ qui sont triangulaires inférieures, c'est-à-dire telles que $m>k\Longrightarrow t_{k,m}=0$.
 - 1. Montrer que e_n est vecteur propre de tout $T \in \mathcal{L}$ (c'est à dire Te_n est colinéaire à e_n). Que peut-on dire de la propriété P_6 pour \mathcal{L} ?
 - 2. Indiquer celles des propriétés P_1, \ldots, P_5 qui sont vérifiées par \mathcal{L} ; justifier les réponses.

- **I.C** Dans cette section I.C, n=2 et \mathcal{L} est un sous-ensemble de E pour lequel P_3 et P_4 sont vérifiées.
 - 1. On suppose que P_1 n'est pas vérifiée par \mathcal{L} (les matrices 2 x 2 de rang 1 appartiennent donc toutes à $E \setminus \mathcal{L}$ le complémentaire de \mathcal{L} dans E). Soit $A \in \mathcal{L}$ et $\lambda \in \mathbb{C}$. Quelles sont les valeurs possibles du rang de $A \lambda I$? Montrer que \mathcal{L} est l'ensemble des homothéties vectorielles.
 - 2. On suppose que P_6 est vérifiée par \mathcal{L} . Montrer qu'alors la propriété P_1 est vérifiée par \mathcal{L} .

Dans toute la suite du problème, P_4 et P_5 sont supposées vérifiées : \mathcal{L} est donc un sous-espace vectoriel de E stable par produit matriciel.

Partie II.

Dans cette partie, les propriétés P_3 et P_6 sont supposées vérifiées par \mathcal{L} (en plus de P_4 et P_5). On veut montrer qu'alors P_1 aussi est vérifiée. On note :

$$m = \min\{\operatorname{rg}(M) \setminus M \in \mathcal{L} \setminus \{0_E\}\}$$

et on se propose de montrer que m=1 ce qui établira P_1 .

On suppose dans un premier temps que $m \geq 2$. On note alors M_0 un élément de \mathcal{L} qui vérifie $\operatorname{rg}(M_0) = m$ et on considère une base $(zi)_{1 \leq i \leq m}$ de $M_0(V)$. On note x_1, \ldots, x_n des éléments de V tels que $\forall i \in [1, m], \ M_0 x_i = z_i$.

- II.A Montrer que $\{Nz_1 \setminus N \in \mathcal{L}\} = V$. On note alors N_0 un élément de \mathcal{L} qui vérifie $N_0z_1 = x_2$ et on pose $M_1 = M_0N_0M_0$. Montrer que (M_0, M_1) est une famille libre.
- II.B Montrer que $M_0(V)$ est stable par M_0N_0 , puis que :

$$\exists (\alpha,z) \in \mathbb{C} \times M_0(V) \text{ tel que } z \neq 0_E \text{ et } \mathrm{M}_0\mathrm{N}_0\mathrm{z} = \alpha\mathrm{z}$$

En déduire que $0 < \operatorname{rg}(M_1 - aM_0) < rg(M_0)$. Conclure que m = 1.

Partie III.

Dans cette partie on suppose que n>2 et que la dimension de $\mathcal L$ est supérieure ou égale à n^2-1 . On veut montrer que P_3 et P_6 sont vérifiées, puis que $\mathcal L=E$, c'est-à-dire qu'il n'existe pas d'hyperplan de E stable par produit matriciel.

III.A Soit W un sous-espace vectoriel de V stable par \mathcal{L} ; on note k la dimension de W. Montrer que $\{M \in E \setminus M(W) \subset W\}$ est un sous-espace vectoriel de E qui contient \mathcal{L} et dont la dimension vaut $n^2 - k(n-k)$. En déduire que $W = 0_V$ ou W = V. On a donc démontré P_6 .

III.B

- 1. On suppose ici : $(*) \exists (k,m) \in (\llbracket 1,n \rrbracket)^2, \ k \neq m \quad \text{et } E_{k,m} \in E \setminus \mathcal{L}$. On note alors $\mathcal{H} = Vect(E_{k,m},I)$ le sous-espace vectoriel de E engendré par $E_{k,m}$ et I. Montrer que $\dim(\mathcal{H} \cap \mathcal{L}) \geq 1$ puis que \mathcal{L} contient une matrice inversible.
- 2. On suppose ici que c'est le contraire de (*) qui est vrai, donc $k \neq m \Rightarrow E_{k,m} \in \mathcal{L}$. Trouver une combinaison linéaire de ces $E_{k,m}$ qui donne une matrice inversible. En déduire que dans tous les cas \mathcal{L} contient une matrice inversible A.

III.C Montrer que pour la matrice A définie ci-dessus, la famille $(A, A^2, ..., A^{n^2+1})$ est une famille liée. En déduire qu'il existe un entier p > 0 et des nombres complexes $(\lambda_i)_{0 \le i \le p}$ tels que $\lambda_0 \lambda_p \ne 0$ et

$$\sum_{j=0}^{p} \lambda_j A^j = \lambda_0 I + \lambda_1 A + \dots + \lambda_p A^p = 0.$$

Montrer alors que $I \in \mathcal{L}$. On a donc démontré P3.

Compte tenu de la partie II , la propriété P_1 est donc satisfaite. On note alors M_0 une matrice de rang 1 qui appartient à \mathcal{L} , matrice que l'on peut écrire $M_0 = v_0^t \overline{w_0}$, où v_0 et w_0 sont des éléments non nuls de V. On introduit le produit scalaire canonique sur V, $(v,w) \to^t \overline{v}w$ et pour $v \in V$ on pose : $A_v = \{Lv, L \in \mathcal{L}\}$,

$$B_v = \{ {}^t \overline{L}v, \ L \in \mathcal{L} \},$$

$$C_v = (B_v)^{\perp}.$$

III.D Soit $u \in V, u \neq 0_V$. Montrer que C_u est un sous-espace vectoriel de V stable par \mathcal{L} et que B_u n'est pas réduit à $\{0_V\}$.

Montrer alors que $C_u = \{0_V\}$ et $B_u = V$.

Montrer que $A_u = V$. En déduire que pour tout $(x, y) \in V^2$ il existe $L, M \in \mathcal{L}$ tels que $Lv_0 = x$ et ${}^t\overline{M}w_0 = y$, puis que toute matrice $A \in E$ de rang 1 appartient à \mathcal{L} . Montrer que $\mathcal{L} = E$.