
N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il la signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Notations

Soit \mathbb{N} l'ensemble des entiers naturels, $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ et $\mathbb{N}_n = \{1, 2, \dots, n\}$. Si n et p sont des entiers supérieurs ou égaux à 1, on note $\mathcal{M}_{n,p}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices à coefficients dans \mathbb{R} ayant n lignes et p colonnes. Lorsque p = n, $\mathcal{M}_{n,n}(\mathbb{R})$ est noté plus simplement $\mathcal{M}_n(\mathbb{R})$ et est muni de sa structure d'algèbre, I_n représentant la matrice identité. $GL_n(\mathbb{R})$ désigne l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$, $\mathcal{S}_n(\mathbb{R})$ l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{O}_n(\mathbb{R})$ l'ensemble des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$.

Pour $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ appartenant à $\mathcal{M}_{n,p}(\mathbb{R})$, tA désigne la matrice transposée de A: c'est un élément de $\mathcal{M}_{p,n}(\mathbb{R})$,

 $\operatorname{Ker}(A)$ est le noyau de A défini par : $\operatorname{Ker}(A) = \{X \in \mathcal{M}_{p,1}(\mathbb{R}) \mid AX = 0\}$ et $\operatorname{Im}(A)$ est l'image de A définie par : $\operatorname{Im}(A) = \{Y \in \mathcal{M}_{p,1}(\mathbb{R}) \mid \exists X \in \mathcal{M}_{p,1}(\mathbb{R}), Y = AX\}.$

 \mathbb{R} est muni de son produit scalaire canonique noté $\langle \cdot, \cdot \rangle$ et de la norme associée notée $\| \cdot \|$ et on identifiera selon l'usage $\mathcal{M}_{n,1}(\mathbb{R})$ à \mathbb{R}^n .

Une matrice S de $\mathcal{S}_n(\mathbb{R})$ est dite positive si :

$$\forall X \in \mathscr{M}_{n,1}(\mathbb{R}), {}^t\!XSX \geqslant 0$$

et définie positive si :

$$\forall X \in \mathscr{M}_{n,1}(\mathbb{R}) \setminus \{0\}, {}^{t}XSX > 0.$$

On note $\mathcal{S}_n^+(\mathbb{R})$ l'ensemble des matrices symétriques réelles positives d'ordre n et $\mathcal{S}_n^{++}(\mathbb{R})$ l'ensemble des matrices symétriques réelles définies positives d'ordre n.

PARTIE I

I.1 Soit M la matrice de $\mathcal{M}_4(\mathbb{R})$ donnée par :

$$M = \begin{pmatrix} 1 & 1 & 1 & -2 \\ 0 & 0 & 0 & 2 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

- a) Déterminer une base de chacun des sous-espaces vectoriels Ker(M) et $Ker(^tM)$. Existe-t-il une relation d'inclusion entre les noyaux Ker(M) et $Ker(^tM)$?
- b) Déterminer une base de chacun des sous-espaces vectoriels $\operatorname{Im}(M)$ et $\operatorname{Im}({}^tM)$. Existe-t-il une relation d'inclusion entre les images $\operatorname{Im}(M)$ et $\operatorname{Im}({}^tM)$?
- **I.2** Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$.
 - a) Montrer que $\operatorname{Ker}({}^{t}AA) = \operatorname{Ker}(A)$ et $\operatorname{Ker}(A{}^{t}A) = \operatorname{Ker}({}^{t}A)$.
 - **b)** Montrer que $\operatorname{rg}({}^{t}AA) = \operatorname{rg}(A{}^{t}A) = \operatorname{rg}(A)$.
 - c) Montrer que $\operatorname{Im}({}^{t}AA) = \operatorname{Im}({}^{t}A)$ et $\operatorname{Im}(A{}^{t}A) = \operatorname{Im}(A)$.
- **I.3** Soit q un entier naturel non nul et $\mathcal{S} = (x_1, x_2, \cdots, x_q)$ un système de q vecteurs de \mathbb{R}^n .

On note F le sous-espace vectoriel engendré par \mathcal{S} , $r=\dim F$ et $G=(g_{i,j})$ la matrice de $\mathcal{M}_q(\mathbb{R})$ définie par $g_{i,j}=\langle x_i,x_j\rangle$ pour tout $(i,j)\in\mathbb{N}_q^2$. Le déterminant de G est appelé déterminant de Gram du système \mathcal{S} et sera noté $\gamma(x_1,x_2,\cdots,x_q)$. Soit (e_1,e_2,\cdots,e_r) une base orthonormale de F, on note pour tout j de \mathbb{N}_q , $x_j=\sum_{i=1}^r b_{i,j}e_i$ et B la matrice de $\mathcal{M}_{r,q}(\mathbb{R})$ de terme général $b_{i,j}$.

- a) Montrer que $G = {}^{t}BB$ et en déduire rg(G) = rg(S).
- b) Montrer que G est diagonalisable et que ses valeurs propres sont toutes positives.

- c) En déduire que $\gamma(x_1, x_2, \dots, x_q) \geqslant 0$ et que $\gamma(x_1, x_2, \dots, x_q) = 0$ si et seulement si la famille (x_1, x_2, \cdots, x_q) est liée.
- d) Montrer que l'inégalité de Cauchy-Schwarz avec sa condition nécessaire et suffisante d'égalité est un cas particulier de ce résultat.
- **I.4** Montrer que $\gamma(x_1, x_2, \dots, x_q)$ reste invariant si l'on ajoute à l'un des vecteurs x_i une combinaison linéaire des autres.
- **I.5** Dans cette question q est supérieur ou égal à 2.
 - a) On note L le sous-espace vectoriel engendré par (x_2, x_3, \dots, x_q) et $p_L(x_1)$ la projection orthogonale de x_1 sur L, puis on pose $h_1 = x_1 - p_L(x_1)$. Montrer que : $\gamma(x_1, x_2, \cdots, x_q) = \|h_1\|^2 \gamma(x_2, \cdots, x_q).$
 - b) En déduire successivement :
 - i) $\gamma(x_1, x_2, \dots, x_q) \leq \gamma(x_1)\gamma(x_2, x_3, \dots, x_q)$ avec égalité si et seulement si x_1 est orthogonal à L.
 - ii) $\gamma(x_1, x_2, \dots, x_q) \leqslant \gamma(x_1)\gamma(x_2)\cdots\gamma(x_q)$ avec égalité si et seulement si les vecteurs x_1, x_2, \dots, x_q x_q sont deux à deux orthogonaux.
- **I.6** Soit $A = (a_{i,j}) \in GL_n(\mathbb{R})$ et c_1, c_2, \ldots, c_n ses vecteurs colonnes.
 - a) Montrer que :

$$|\det A| \leqslant \prod_{k=1}^{n} ||c_k||$$

 $|\det A|\leqslant \prod_{k=1}^n\|c_k\|$ avec égalité si et seulement si les vecteurs $c_1,\,\ldots,\,c_n$ sont deux à deux orthogonaux.

b) On suppose de plus : $\forall (i,j) \in \mathbb{N}_n^2, |a_{i,j}| \leq 1$. Montrer que :

avec égalité si et seulement si A est une matrice à coefficients dans $\{-1,+1\}$ et dont les vecteurs colonnes sont deux à deux orthogonaux.

PARTIE II

On note:

- \mathcal{H}_n l'ensemble des matrices carrées d'ordre n à coefficients dans $\{-1,+1\}$ dont les vecteurs colonnes sont deux à deux orthogonaux.
- \mathcal{D}_n l'ensemble des matrices diagonales d'ordre n à coefficients diagonaux dans $\{-1,+1\}$.
- E l'ensemble des entiers naturels n pour lesquels \mathcal{H}_n est non vide.
- II.1 Déterminer explicitement toutes les matrices éléments de \mathcal{H}_2 .
- **II.2** a) Montrer que toute matrice A de \mathcal{H}_n vérifie ${}^tAA = nI_n$.
 - b) Réciproquement toute matrice carrée A vérifiant ${}^tAA = nI_n$ est-elle dans \mathcal{H}_n ?
 - c) Montrer que si A est à coefficients dans $\{-1,+1\}$ et vérifie ${}^tAA = nI_n$, alors A est dans \mathcal{H}_n .
- II.3 On appelle permutation σ de \mathbb{N}_n toute bijection de \mathbb{N}_n sur lui-même et matrice de permutation $P^{(\sigma)}$ associée à la permutation σ , la matrice d'éléments $P_{i,j}^{(\sigma)}$ donnés par :

$$\forall (i,j) \in \mathbb{N}_n^2, P_{i,j}^{(\sigma)} = \delta_{i,\sigma(j)}$$

où $\delta_{k,l}$ désigne le symbole de Kronecker : $\delta_{k,l} = \begin{cases} 1 & \text{si} \quad k = l \\ 0 & \text{si} \quad k \neq l \end{cases}$

Soit σ une permutation de \mathbb{N}_n et $A \in \mathscr{M}_n(\mathbb{R})$.

- a) Donner le terme général de la matrice ${}^tP^{(\sigma)}A$. Comment obtient-on cette matrice ${}^tP^{(\sigma)}A$ à partir
- b) Donner le terme général de la matrice $AP^{(\sigma)}$. Comment obtient-on cette matrice $AP^{(\sigma)}$ à partir de
- c) Montrer que si A appartient à \mathcal{H}_n , il en est de même de ${}^t\!A$, des matrices ${}^t\!P^{(\sigma)}A$ et $AP^{(\sigma)}$ pour toute permutation σ ainsi que des matrices $A\Delta$ et ΔA pour toute matrice Δ de \mathcal{D}_n .
- **II.4** Si $A = (a_{i,j}) \in \mathcal{M}_2(\mathbb{R})$ et $B \in \mathcal{M}_n(\mathbb{R})$, on définit le produit direct de A et B par :

$$A \otimes B = \begin{pmatrix} a_{1,1}B & a_{1,2}B \\ a_{2,1}B & a_{2,2}B \end{pmatrix} \in \mathscr{M}_{2n}(\mathbb{R}).$$

- a) Montrer que si $A \in \mathcal{H}_2$ et $B \in \mathcal{H}_n$, alors $A \otimes B \in \mathcal{H}_{2n}$.
- b) En déduire que E contient toutes les puissances de 2.
- c) Montrer que l'ensemble $\{A \otimes B \mid (A, B) \in \mathcal{H}_2 \times \mathcal{H}_2\}$ est strictement inclus dans \mathcal{H}_4 .
- **II.5** Soit $n \in E, n > 2$.
 - a) Montrer qu'il existe un élément de \mathcal{H}_n dont tous les coefficients de la première colonne valent 1. Déduire alors de l'orthogonalité des vecteurs colonnes 1 et 2 d'une telle matrice que n est pair. On pose n=2m.
 - b) Montrer qu'il existe un élément de \mathcal{H}_n dont tous les coefficients de la première colonne valent 1 et dont la deuxième colonne est constituée de m coefficients égaux à 1 suivis de m coefficients égaux à -1. Déduire alors de l'orthogonalité du troisième vecteur colonne avec les vecteurs colonnes 1 et 2 que n est un multiple de 4.

PARTIE III

- III.1 Soit $S \in \mathcal{S}_n(\mathbb{R})$. Montrer que $S \in \mathcal{S}_n^{++}(\mathbb{R})$ si et seulement si toutes ses valeurs propres sont strictement positives.
- III.2 Soit $M \in GL_n(\mathbb{R})$. On souhaite montrer l'existence de R orthogonale et S symétrique définie positive telle que M = RS.
 - a) Montrer que la matrice ${}^{t}MM$ est symétrique définie positive.
 - **b)** En déduire qu'il existe $S \in \mathcal{S}_n^{++}(\mathbb{R})$ tel que ${}^t MM = S^2$.
 - c) Montrer que S est inversible et que MS^{-1} est orthogonale.
 - d) Conclure. Dans toute la suite du problème on admettra l'unicité d'une telle factorisation.
- III.3 Soit $\Sigma \in \mathcal{S}_n^+(\mathbb{R})$, $\lambda_1, \lambda_2, \ldots, \lambda_n$ ses valeurs propres non nécessairement distinctes, D la matrice diagonale dont les éléments diagonaux sont $\lambda_1, \lambda_2, \ldots, \lambda_n$ et $Q \in \mathcal{O}_n(\mathbb{R})$.
 - a) Montrer que tr $(\Sigma) = \sum_{i=1}^{n} \lambda_i$.
 - b) Montrer qu'il existe une matrice orthogonale Q_1 telle que tr $(Q\Sigma) = \operatorname{tr}(Q_1D)$ et en déduire : $\operatorname{tr}(Q\Sigma) \leqslant \operatorname{tr}(\Sigma)$.
 - c) Montrer que $\sup_{Q \in \mathcal{O}_n(\mathbb{R})} |\operatorname{tr}(Q\Sigma)| = \operatorname{tr}(\Sigma).$
- **III.4** Soit $n \in E$. Pour toute matrice $A = (a_{i,j})$ de \mathcal{H}_n , on pose :

$$f(A) = \sum_{1 \leqslant i \leqslant j \leqslant n} a_{i,j} = \sum_{i=1}^{n} \left(\sum_{j=i}^{n} a_{i,j} \right).$$

- a) Montrer que l'application f ainsi définie de \mathcal{H}_n dans \mathbb{R} admet une borne supérieure que l'on notera α_n .
- b) Soit $T = (t_{i,j})$ la matrice triangulaire inférieure d'ordre n définie par $t_{i,j} = 1$ si $i \ge j$ et $t_{i,j} = 0$ si i < j. Montrer que $f(A) = \operatorname{tr}(AT)$.
- c) D'après la question III.2, on sait que T = RS avec R orthogonale et S symétrique définie positive. Montrer alors que $f(A) \leq \sqrt{n} \operatorname{tr}(S)$, puis que $\alpha_n \leq \sqrt{n} \operatorname{tr}(S)$.
- d) Lorsque n=2, évaluer α_2 et $\sqrt{2}$ tr (S).

Fin de l'énoncé