

CHAMBRE DE COMMERCE ET D'INDUSTRIE DE PARIS DIRECTION DE L'ENSEIGNEMENT

Direction des Admissions et concours

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON

CONCOURS D'ADMISSION SUR CLASSES PREPARATOIRES

OPTION ECONOMIQUE MATHEMATIQUES III

Année 2006

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Ils ne doivent faire usage d'aucun document : l'utilisation de toute calculatrice et de tout matériel électronique est interdite.

Seule l'utilisation d'une règle graduée est autorisée.

EXERCICE

Dans cet exercice, n désigne un entier supérieur ou égal à 2, λ et μ deux nombres réels strictement positifs et B la matrice de $\mathfrak{M}_n(\mathbb{R})$ suivante :

$$B = \begin{pmatrix} 0 & \lambda & 0 & \dots & \dots & 0 \\ \mu & 0 & \lambda & \ddots & & \vdots \\ 0 & \mu & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \mu & 0 & \lambda \\ 0 & \dots & \dots & 0 & \mu & 0 \end{pmatrix}, \quad \text{c'est à dire} \quad B = (b_{i,j}) \quad a = \text{avec} \quad \begin{cases} b_{i,j} = \lambda & \text{si } j = i+1 \\ b_{i,j} = \mu & \text{si } j = i-1 \\ b_{i,j} = 0 & \text{sinon} \end{cases}$$

On s'intéresse aux valeurs propres de B et pour cela, pour a réel, on note $A_a = B - aI_n$, où I_n désigne la matrice unité d'ordre n.

1. **Exemple** . Dans cette question, on considère la matrice
$$B = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

(a) La matrice B est-elle diagonalisable?

(b) Déterminer les valeurs propres et les vecteurs propres de l'endomorphisme de \mathbb{R}^5 canoniquement associé à la matrice B.

On revient maintenant au cas général. On dira qu'une suite $(u_k)_{k\in\mathbb{N}}$ vérifie la propriété (R) lorsque l'on a, pour tout k de \mathbb{N} : $\mu u_k - au_{k+1} + \lambda u_{k+2} = 0$

2. Montrer qu'un vecteur $X=\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix}$ de $\mathfrak{M}_{n,1}(\mathbb{R})$ vérifie $A_aX=0$ si et seulement si,

en posant $x_0 = x_{n+1} = 0$, les nombres $x_0, x_1, ..., x_n, x_{n+1}$ sont les n+2 premiers termes d'une suite vérifiant (R).

- 3. On suppose dans cette question que $a^2 > 4\lambda\mu$.
 - (a) Déterminer l'ensemble des suites vérifiant (R)
 - (b) Montrer que si un vecteur X de $\mathfrak{M}_{n,1}(\mathbb{R})$ vérifie $A_aX=0$, alors X est le vecteur nul.
- 4. On suppose dans cette question que $a^2 = 4\lambda\mu$.
 - (a) Déterminer l'ensemble des suites vérifiant (R).
 - (b) Montrer que si un vecteur X de $\mathfrak{M}_{n,1}(\mathbb{R})$ vérifie $A_aX=0$, alors X est le vecteur nul.
- 5. (a) En déduire que si B admet des valeurs propres, elles appartiennent à l'intervalle $]-2\sqrt{\lambda\mu},2\sqrt{\lambda\mu}[$
 - (b) Un théorème classique dû à Jacques Hadamard, affirme que si le réel a est valeur propre de B, alors $|a| \leq \lambda + \mu$ (ce théorème n'est pas à démontrer).

Le résultat que l'on a obtenu en [5)a:] est-il meilleur que le résultat du théorème d'Hadamard?

Problème

Ce problème a pour objet principal la modélisation d'un processus aléatoire ponctuel (discret) représenté par une suit de variables aléatoires de Bernoulli. Ce modèle est ensuite approché par un modèle continu, et dans la dernière partie, on s'intéresse, dans un cas particulier, à l'adéquation de ce modèle continu au modèle discret initial. Dans tout le problème, λ désigne un nombre réel de l'intervalle ouvert]0,1[.

Partie I: Modèle discret.

On suppose donnée une suite $(X_n)_{n\in\mathbb{N}}$ de variables aléatoires de Bernoulli, définies sur un espace probabilisé (Ω, \mathcal{A}, P) . Pour tout n de \mathbb{N} , on note p_n le paramètre de la variable aléatoire X_n .

On suppose que p_0 appartient à l'intervalle ouvert]0,1[et que pour tout n de \mathbb{N} , on a les probabilités conditionnelles suivantes :

$$P_{(X_n=1)}(X_{n+1}=1) = P(X_n=1) = p_n$$
 et $P_{(X_n=0)}(X_{n+1}=1) = \lambda P(X_n=1) = \lambda p_n$

[On rappelle que la probabilité conditionnelle $P_A(B)$ peut aussi se noter P(B/A)]

- 1. (a) Montrer que pour tout entier n de \mathbb{N} , on a : $p_{n+1} = (1-\lambda)p_n^2 + \lambda p_n$.
 - (b) En déduire que pour tout entier n de $\mathbb{N},$ on a : $0 < p_n < 1$
- 2. (a) Montrer que la suite $(p_n)_{n\in\mathbb{N}}$ est convergent et déterminer sa limite.
 - (b) On pose $a = (1 \lambda)p_0 + \lambda$. Établir, pour tout n de \mathbb{N} , l'inégalité : $p_n \leq a^n$. En déduire que la série de terme général p_n est convergente.
- 3. Pour tout n de N, on définit la variable aléatoire Y_n par : $Y_n = \sum_{k=0}^n X_k$ et on note $E(Y_n)$ son espérance.

- (a) Justifier l'existence de la limite L de la suite $(E(Y_n))_{n\in\mathbb{N}}$.
- (b) Ecrire une fonction Pascal permettant de calculer une valeur approchée de $E(Y_n)$. L'en-tête de cette fonction sera :

function approx(n :integer ; p0, lambda : real) : real

- 4. (a) Exprimer, pour tout n de \mathbb{N} , la covariance $Cov(X_n, X_{n+1})$ de X_n et X_{n+1} en fonction de p_n et p_{n+1} . Les variables X_n et X_{n+1} sont-elles indépendantes ?
 - (b) Montrer que $\lim_{n\to\infty} \left(\frac{p_{n+1}}{p_n}\right) = \lambda$.
 - (c) Pour tout n de \mathbb{N} , on note r_n le coefficient de corrélation linéaire entre X_n et X_{n+1} :

$$r_n = \frac{\operatorname{Cov}(X_n, X_{n+1})}{\sqrt{V(X_n)V(X_{n+1})}}$$
 où V désigne la variance

Exprimer r_n en fonction de p_n et p_{n+1} .

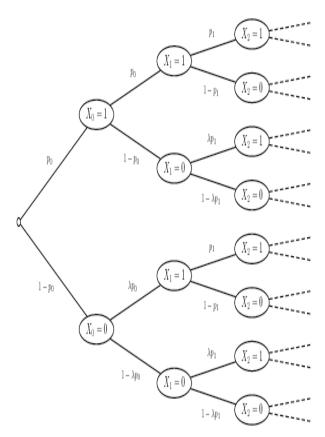
Montrer que lorsque n tend vers $+\infty$, r_n est équivalent à $\frac{1-\lambda}{\sqrt{\lambda}}p_n$

Partie II: Simulation.

On rappelle que la fonction Pascal random simule une variable aléatoire suivant une loi uniforme sur l'intervalle [0, 1].

Soit N un entier naturel non nul et inférieur ou égal à 200.

On considère la suite finie des N+1 variables aléatoires $X_0, X_1, ..., X_N$ vérifiant les conditions de la partie I, modélisée par l'arbre pondéré suivant, et on note encore $Y_N = X_0 + \cdots + X_N$.



On cherche à étudier cette situation à l'aide du programme suivant :

Program evaluation;

var lambda,p0 : real;

```
function bernoulli(p:real):integer;
  begin
     if random <= p then bernoulli :=1 else bernoulli :=0;
  end;
function simulation(N:integer):integer;
  var c,i,x : integer; a,p,q :real;
 begin
    p:=p0; x:=bernoulli(p); c:=x;
    for i:=1 to N do
      begin
        q:=p;
        if x=0 then q:=p*lambda;
        x:=bernoulli(q); c:=c+x; p:= (1-lambda)*p*p + lambda * p;
      end;
    simulation:=c;
  end;
var y,k, N :integer; T: array[0..200] of integer; begin
  readln(lambda);readln(p0);readln(N);randomize;
 for k:=0 to N do T[k]:=0;
  for k:=1 to 10000 do
    begin
      y:=simulation(N); T[y] := T[y]+1;
    end:
  for k:=0 to N do
     begin
       write(T[k]); write(' ');
  readln;
end.
```

- 1. Expliquer le résultat rendu par la fonction bernoulli.
- 2. Expliquer le fonctionnement de la fonction simulation et donner en particulier la signification du résultat rendu.
- 3. Le programme evaluation permet de simuler une variable aléatoire. En se référant à la loi faible des grands nombres, quelle loi de probabilité peut-on simuler grâce à ce programme?

Partie III: Modèle continu.

soit ℓ tel que $0 < \ell < 1$ et soit T un réel strictement positif. Pour tout t de [0,T], on définit une variable aléatoire X(t) sur un espace probabilisé (Ω, \mathcal{A}, P) qui suit une loi de Bernoulli de paramètre p(t), c'est à dire que p(t) = p(X(t) = 1). On suppose que la fonction p est définie et dérivable sur [0,T], de dérivée p', et vérifie la relation :

$$\forall t \in [0, T]$$
 $p'(t) = (1 - \ell)p(t)(p(t) - 1)$

On note $p(0) = p_0$ et on suppose que p_0 appartient à l'intervalle ouvert [0, 1].

1. Soit f la fonction définie sur [0,T] par $f(t)=p(t)\times e^{(1-\ell)t}$. Montrer que f est croissante sur [0,T] et en déduire que la fonction p ne s'annule pas sur [0,T].

- 2. (a) Soit g la fonction définie sur [0,T] par : $g(t) = \frac{e^{-(1-\ell)t}}{p(t)}$. Exprimer g'(t) en fonction de ℓ et t et en déduire qu'il existe une constante k telle que, pour tout t de [0,T], $g(t) = k + e^{(\ell-1)t}$.
 - (b) Montrer que, pour tout t de [0,T], on a : $p(t) = \frac{p_0}{p_0 + (1-p_0)e^{(1-\ell)t}}$.
 - (c) Dresser le tableau de variations de p sur [0,T]. Soit (C) la courbe représentative de p dans le plan rapporté à un repère orthogonal. À quelle condition, portant sur p_0 , la courbe (C) présente-t-elle un point d'inflexion? Quelles sont alors les coordonnées de ce point?
- 3. Pour tout $n \in \mathbb{N}^*$, on note $\delta = \frac{T}{n}$ et pour tout $k \in [0, n]$, $t_k = k\delta$. Pour tout $n \in \mathbb{N}^*$, on définit la variable aléatoire Z_n par : $Z_n = \sum_{k=0}^n X(t_k)$, d'espérance $E(Z_n)$.
 - (a) Montrer que la suite $\left(\frac{E(Z_n)}{n}\right)_{n\in\mathbb{N}^\times}$ est convergente et de limite $\frac{1}{T}\int\limits_0^T p(t)\ dt$. Cette limite sera notée m(T) dans la suite de cette partie.
 - (b) Justifier la validité du changement de variable $u=e^{(1-\ell)t}$ dans l'intégrale $\int\limits_0^T p(t)\ dt$ et en déduire que l'on a :

$$m(T) = \frac{1}{(1-\ell)T} \int_{1}^{e^{(1-\ell)T}} \left(\frac{1}{u} - \frac{1-p_0}{p_0 + (1-p_0)u}\right) du$$

(c) En déduire une expression de m(T) en fonction de p_0 , ℓ et T et montrer que , lorsque T tend vers $+\infty$, p_0 et ℓ étant fixés, m(T) est équivalent à $-\frac{\ln(1-p_0)}{(1-\ell)T}$

Partie IV: Retour au modèle discret.

Soit n un entier naturel non fixé. Avec les notations des parties I et III, on suppose que $p_0 = \frac{1}{3}$, $\ell = \frac{1}{2}$ et $T = 2n(1-\lambda)$.

- 1. Montrer que la fonction p définie dans la partie III est deux fois dérivable sur [0,T], et montrer que pour tout t de [0,T]: $p''(t) = \frac{1}{4}(2p(t)-1)p(t)(p(t)-1)$ où p'' désigne la dérivée seconde de p.
- 2. On rappelle que pour tout k de [0, n], $t_k = k\delta = k\frac{T}{n}$ et que p_k a été défini dans la partie I. Pour tout k de [0, n], on pose $\varepsilon_k = p(t_k) p_k$.
 - (a) Établir, pour tout k de [0, n-1], l'inégalité suivante : $|p(t_{k+1}-p(t_k)-\delta p'(t_k))| \leqslant \frac{\delta^2}{8}$.
 - (b) Établir, pour tout k de [0, n-1], l'égalité : $p(t_k) + \delta p'(t_k) p_{k+1} = \varepsilon_k [1 (1-\lambda)(1-p(t_k) p_k)]$.
 - (c) En déduire, pour tout k de [0, n-1], l'inégalité suivante : $|\varepsilon_{k+1}| \leq \frac{\delta^2}{8} + \frac{1}{3}(\lambda+2)|\varepsilon_k|$.
 - (d) Établir, pour tout k de [0, n], l'inégalité : $|\varepsilon_k| \leq 6(1 \lambda)$.
- 3. Pour tout réel α tel que $\alpha > 18(1-\lambda)$, on pose : $N(\alpha) = \frac{1}{1-\lambda} \ln \left(\frac{\alpha}{12(1-\lambda)} \frac{1}{2} \right)$.
 - (a) Vérifier que pour tout réel $\alpha > 18(1 \lambda)$, on a $N(\alpha) > 0$.
 - (b) Montrer que si $n \leq N(\alpha)$, alors pour tout k de [0, n], on a : $\left| \frac{p(t_k) p_k}{p(t_k)} \right| \leq \alpha$.
 - (c) Montrer que, pour α fixé, $\lim_{\lambda \to 1} N(\alpha) = +\infty$
 - (d) Conclure sur la qualité de l'approximation du modèle discret par le modèle continu, lorsque λ se "rapproche" de 1.