

CODE EPREUVE:

296 EML_MATE

Concepteur: EM LYON

1^{ère} épreuve (option économique)

MATHÉMATIQUES

Mardi 2 mai 2006 de 8 heures à 12 heures

Les candidats ne doivent faire usage d'aucun document ; l'utilisation de toute calculatrice et de tout matériel électronique est interdite. Seule l'utilisation d'une règle graduée est autorisée.

TOURNEZ S.V.P.

EXERCICE 1

On considère les trois matrices de $\mathbf{M}_2(\mathbb{R})$ suivantes :

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

- **1.a.** Quelles sont les valeurs propres de A?
 - **b.** Déterminer une matrice inversible P telle que : $A = PDP^{-1}$.

On note E l'ensemble des matrices carrées M d'ordre deux telles que : AM = MD.

- **2.a.** Vérifier que E est un sous-espace vectoriel de $\mathbf{M}_2(\mathbb{R})$.
 - **b.** Soit $M = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ une matrice de $\mathbf{M}_2(\mathbb{R})$.

 Montrer que M appartient à E si et seulement si : z = 0 et y = t.
 - c. Établir que (U, A) est une base de E.
 - **d.** Calculer le produit UA. Est-ce que UA est élément de E?
- 3. On note $f: \mathbf{M}_2(\mathbb{R}) \longrightarrow \mathbf{M}_2(\mathbb{R})$ l'application définie, pour toute $M \in \mathbf{M}_2(\mathbb{R})$, par : f(M) = AM MD.
 - a. Vérifier que f est linéaire.
 - **b.** Déterminer le noyau de f et donner sa dimension.
 - **c.** Quelle est la dimension de l'image de f?
 - **d.** Déterminer les matrices M de $\mathbf{M}_2(\mathbb{R})$ telles que f(M) = M. En déduire que 1 est valeur propre de f. Montrer que -1 est aussi valeur propre de f.
 - **e.** Est-ce que f est diagonalisable?
 - **f.** Montrer: $f \circ f \circ f = f$.

EXERCICE 2

On note $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$ l'application définie, pour tout $(x, y) \in \mathbb{R}^2$ par :

$$F(x,y) = (x-1)(y-2)(x+y-6).$$

- 1.a. Montrer que (4,2) et (2,3) sont des points critiques de F.
 - **b.** Est-ce que F présente un extrémum local au point (4,2)? Est-ce que F présente un extrémum local au point (2,3)?
- 2. On note $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$ l'application définie, pour tout $x \in \mathbb{R}$, par :

$$\varphi(x) = x(x-2)(2x-5).$$

- **a.** Montrer: $\forall x \in [4; +\infty[, (x-2)(2x-5) \ge 4]$.
- **b.** En déduire : $\forall x \in [4; +\infty[, \varphi(x) \ge 4x \text{ et } \varphi(x) \in [4; +\infty[.$
- **3.** On considère la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=4$ et :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = F(1 + u_n, u_n).$$

- a. Exprimer u_{n+1} en fonction de u_n à l'aide de la fonction φ .
- **b.** Montrer : $\forall n \in \mathbb{N}, u_n \geqslant 4^{n+1}$.

 Quelle est la nature de la série de terme général $\frac{1}{u_n}$?
- c. Écrire un programme en Turbo-Pascal qui calcule et affiche le plus petit entier naturel n tel que $u_n \ge 10^{10}$.
- **4.** On note $g:[4;+\infty[\longrightarrow \mathbb{R} \text{ l'application définie, pour tout } x\in[4;+\infty[, \text{ par } :$

$$g(x) = \frac{10}{\varphi(x)}.$$

- a. Montrer que l'intégrale $\int_4^{+\infty} g(x) dx$ converge.
- **b.** Trouver trois réels a, b, c tels que :

$$\forall x \in [4; +\infty[, g(x)] = \frac{a}{x} + \frac{b}{x-2} + \frac{c}{2x-5}$$

c. Calculer $\int_{A}^{+\infty} g(x) dx$.

EXERCICE 3

PARTIE A

- 1. Soit U une variable aléatoire suivant une loi normale d'espérance nulle et de variance $\frac{1}{2}$.
 - a. Rappeler l'expression d'une densité de U.
 - **b.** En utilisant la définition de la variance de U, montrer que l'intégrale $\int_0^{+\infty} x^2 e^{-x^2} dx$ est convergente et que $\int_0^{+\infty} x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{4}$.

Soit F la fonction définie sur \mathbb{R} par $\begin{cases} \forall x \leq 0, & F(x) = 0 \\ \forall x > 0, & F(x) = 1 - e^{-x^2}. \end{cases}$

- 2. Montrer que la fonction F définit une fonction de répartition d'une variable aléatoire dont on déterminera une densité f.
- 3. Soit X une variable aléatoire admettant f pour densité.
 - a. Montrer que X admet une espérance E(X) et que $E(X) = \frac{\sqrt{\pi}}{2}$.
 - **b.** Déterminer, pour tout réel y, la probabilité $P(X^2 \le y)$. On distinguera les cas $y \le 0$ et y > 0.
 - c. Montrer que la variable aléatoire X^2 suit une loi exponentielle dont on précisera le paramètre. En déduire que X admet une variance V(X) et calculer V(X).

PARTIE B

- 1. Soit Z une variable aléatoire suivant la loi géométrique de paramètre p. Ainsi, pour tout $k \in \mathbb{N}^*$, $P(Z = k) = p(1-p)^{k-1}$. Rappeler la valeur de l'espérance E(Z) et celle de la variance V(Z) de la variable aléatoire Z.
- 2. Soient un entier n supérieur ou égal à 2 et n variables aléatoires indépendantes Z_1, Z_2, \ldots, Z_n suivant toutes la loi géométrique de paramètre p.

 On considère la variable aléatoire $M_n = \frac{1}{n}(Z_1 + Z_2 + \cdots + Z_n)$.
 - a. Déterminer l'espérance m et l'écart-type σ_n de M_n .
 - **b.** Montrer que $\lim_{n\to+\infty} P\left(0\leqslant M_n-m\leqslant\sigma_n\right)$ existe et exprimer sa valeur à l'aide de $\int_0^1 e^{-\frac{x^2}{2}} dx$.