

EPREUVE SPECIFIQUE - FILIERE MP

MATHEMATIQUES 2

Durée: 4 heures

Les calculatrices sont interdites.

* * *

NB: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Calculs de distances entre une matrice et certaines parties de $\mathcal{M}_{n}(\mathbb{R})$

Notations

Dans ce sujet, n est un entier naturel non nul et on note :

 $\mathcal{M}_n(\mathbb{R})$: la \mathbb{R} -algèbre des matrices carrées réelles d'ordre n.

 $\mathcal{M}_{n,1}(\mathbb{R})$: le \mathbb{R} -espace vectoriel des matrices à n lignes et à une colonne.

Pour une matrice A de $\mathcal{M}_n(\mathbb{R})$, 'A est sa matrice transposée, rang (A) son rang et Tr(A) sa trace.

 I_n : la matrice unité de $\mathcal{M}_n(\mathbb{R})$.

 $\mathcal{S}_n(\mathbb{R})$: le sous-espace vectoriel des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$.

 $\mathcal{A}_n(\mathbb{R})$: le sous-espace vectoriel des matrices antisymétriques de $\mathcal{M}_n(\mathbb{R})$.

 $\mathcal{S}_{n}^{+}(\mathbb{R})$: l'ensemble des matrices positives de $\mathcal{S}_{n}(\mathbb{R})$ c'est-à-dire des matrices A de $\mathcal{S}_{n}(\mathbb{R})$ vérifiant : pour toute matrice $X \in \mathcal{M}_{n,1}(\mathbb{R})$, ${}^{t}X \ A \ X \geq 0$.

 $\operatorname{GL}_n(\mathbb{R})$: le groupe des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$.

 $\mathcal{O}_n(\mathbb{R})$: le groupe des matrices réelles orthogonales c'est-à-dire des matrices M de $\mathcal{M}_n(\mathbb{R})$ vérifiant : ${}^t\!M\,M = I_n$.

Pour p entier naturel, Δ_p est l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ de rang supérieur ou égal à p et ∇_p est l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ de rang inférieur ou égal à p.

Objectifs

Le but du sujet est de calculer la distance (par la norme de Schur définie à la question II.3.) d'une matrice à :

dans la partie II., $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ par le théorème de projection orthogonale,

dans la partie III., $\mathcal{O}_n(\mathbb{R})$ par le théorème de décomposition polaire,

dans la partie IV., Δ_p par des notions de densité,

dans la partie V., ∇_p par le théorème de Courant et Fischer.

La partie I. traite un exemple qui sera utilisé dans les différentes parties.

Remarque : dans le texte, le mot « positif » signifie « supérieur ou égal à 0 ».

I. Exercice préliminaire

1. Soit la matrice $\Gamma = \begin{pmatrix} 1 & 2 & 1 \\ -2 & -1 & -1 \\ -1 & -1 & -2 \end{pmatrix}$ de $\mathcal{M}_3(\mathbb{R})$, on pose $H = {}^t\Gamma \Gamma$.

Diagonaliser la matrice H et déterminer une matrice P de $\mathcal{O}_3(\mathbb{R})$ et une matrice diagonale D à termes tous positifs telles que $D^2 = P^{-1} H P$.

2. On pose $S = P D P^{-1} \in \mathcal{S}_3^+(\mathbb{R})$, montrer que la relation $\Gamma = U S$ définit une matrice $U \in \mathcal{O}_3(\mathbb{R})$ et calculer cette matrice.

II. Calcul de la distance de A à $\mathcal{S}_n(\mathbb{R})$ et à $\mathcal{A}_n(\mathbb{R})$

3. Soit *A* et *B* deux matrices de $\mathcal{M}_n(\mathbb{R})$, on pose $(A \mid B) = \operatorname{Tr}({}^t A B)$. Montrer que l'on définit ainsi un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.

La norme associée à ce produit scalaire (norme de Schur) est notée : $||A|| = ((A|A))^{\frac{1}{2}}$.

Dans tout le sujet, si Π est une partie non vide de $\mathcal{M}_n(\mathbb{R})$, la distance d'une matrice A de $\mathcal{M}_n(\mathbb{R})$ à la partie Π est le réel $d(A,\Pi) = \inf_{M \in \Pi} \|A - M\|$.

- **4.** Montrer que $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$ et que cette somme directe est orthogonale.
- **5.** Si A est une matrice de $\mathcal{M}_n(\mathbb{R})$, montrer que $d(A, \mathcal{S}_n(\mathbb{R})) = \left\| \frac{1}{2} (A^{-t}A) \right\|$ et déterminer de même $d(A, \mathcal{A}_n(\mathbb{R}))$.
- **6.** Calculer $d(\Gamma, \mathcal{A}_3(\mathbb{R}))$ où Γ est la matrice exemple de la partie I.

III. Calcul de la distance de A à $\mathcal{O}_{_{\!n}}(\mathbb{R})$

A. Théorème de la décomposition polaire

- **7.** Montrer qu'une matrice S de $\mathcal{S}_n(\mathbb{R})$ appartient à $\mathcal{S}_n^+(\mathbb{R})$ si et seulement si toutes les valeurs propres de S sont positives ou nulles.
- **8.** Si *A* est une matrice de $\mathcal{M}_n(\mathbb{R})$ montrer que la matrice ${}^tA A \in \mathcal{S}_n^+(\mathbb{R})$.
- **9.** Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$, on suppose qu'il existe une matrice diagonale $D = \operatorname{diag}(d_1, d_2, ..., d_n)$ à termes positifs telle que ${}^t A A = D^2$.

On note $A_1, A_2, ..., A_n$ les matrices de $\mathcal{M}_{n,1}(\mathbb{R})$ qui forment les colonnes de la matrice A.

- **a.** Pour tout couple (i, j) d'entiers naturels compris entre 1 et n, évaluer ${}^{t}A_{i}$ A_{j} . En particulier, si i est un entier pour lequel $d_{i} = 0$, que vaut A_{i} ?
- **b.** Montrer que l'on peut trouver une base orthonormée $(E_1, E_2, ..., E_n)$ de $\mathcal{M}_{n,1}(\mathbb{R})$ (par rapport au produit scalaire canonique $\langle X, Y \rangle = {}^t X Y$ de $\mathcal{M}_{n,1}(\mathbb{R})$) telle que, pour tout entier naturel i entre 1 et n, $A_i = d_i E_i$.
- **c.** En déduire qu'il existe une matrice E de $\mathcal{O}_n(\mathbb{R})$ telle que A = E D.
- **10.** Soit *A* et *B* deux matrices de $\mathcal{M}_n(\mathbb{R})$ vérifiant '*A* $A = {}^tB$ *B*.
 - **a.** Montrer qu'il existe une matrice diagonale D à termes positifs et une matrice orthogonale P telles que : $P^{-1} {}^{t} A A P = P^{-1} {}^{t} B B P = D^{2}$.
 - **b.** Montrer qu'il existe une matrice U de $\mathcal{O}_n(\mathbb{R})$ telle que A = U B.
- 11. Déduire des questions précédentes le théorème de décomposition polaire :

Pour toute matrice A de $\mathcal{M}_n(\mathbb{R})$, il existe une matrice U de $\mathcal{O}_n(\mathbb{R})$ et une matrice S de $\mathcal{S}_n^+(\mathbb{R})$ telles que A = U S.

(Remarque : on peut également établir l'unicité de la matrice S de $\mathcal{S}_n^+(\mathbb{R})$ et même l'unicité de la matrice U de $\mathcal{O}_n(\mathbb{R})$ si A est de plus inversible dans cette décomposition mais ce ne sera pas utile pour la suite du problème).

- **B.** Calcul de $d(A, \mathcal{O}_n(\mathbb{R}))$
- **12.** Montrer que, pour toute matrice M de $\mathcal{M}_n(\mathbb{R})$ et pour toute matrice Ω de $\mathcal{O}_n(\mathbb{R})$, $\|M \Omega\| = \|\Omega M\| = \|M\|$.

- **13.** Dans la suite de cette partie, soit A une matrice de $\mathcal{M}_n(\mathbb{R})$, soit $U \in \mathcal{O}_n(\mathbb{R})$ et $S \in \mathcal{S}_n^+(\mathbb{R})$ telles que A = U S; il existe une matrice diagonale D et une matrice P de $\mathcal{O}_n(\mathbb{R})$ telles que S = P D P^{-1} .
 - **a.** Montrer que, pour toute matrice Ω de $\mathcal{O}_n(\mathbb{R})$, $\|A \Omega\| = \|S U^{-1}\Omega\|$ et en déduire que $d(A, \mathcal{O}_n(\mathbb{R})) = d(S, \mathcal{O}_n(\mathbb{R}))$.
 - **b.** Montrer que $d(A, \mathcal{O}_n(\mathbb{R})) = d(D, \mathcal{O}_n(\mathbb{R}))$.
- **14.** On note $D = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$.
 - **a.** Montrer que pour toute matrice Ω de $\mathcal{O}_n(\mathbb{R})$, $\|D \Omega\|^2 = \sum_{i=1}^n \lambda_i^2 2\operatorname{Tr}(D\Omega) + n$.
 - **b.** Montrer que pour toute matrice Ω de $\mathcal{O}_n(\mathbb{R})$, $\operatorname{Tr}(D\Omega) \leq \sum_{i=1}^n \lambda_i$.
 - **c.** Conclure que $d(D, \mathcal{O}_n(\mathbb{R})) = ||D I_n||$.
- **15.** Montrer que $d(A, \mathcal{O}_n(\mathbb{R})) = ||A U||$.
- **16.** Calculer $d(\Gamma, \mathcal{O}_3(\mathbb{R}))$ où Γ est la matrice exemple de la partie I.

$extbf{IV}$. Calcul de la distance de A à Δ_p

- 17. Un résultat de densité.
 - **a.** Soit M un élément de $\mathcal{M}_n(\mathbb{R})$, montrer qu'il existe un réel $\alpha > 0$ tel que pour tout réel λ vérifiant $0 < \lambda < \alpha$, la matrice $M \lambda I_n$ est inversible.
 - **b.** En déduire que $GL_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$.
- **18.** Soit *A* un élément de $\mathcal{M}_n(\mathbb{R})$, déterminer, pour tout entier naturel $p \le n$, $d(A, \Delta_p)$.

V. Calcul de la distance de A à ∇_{p}

A. Théorème de Courant et Fischer

Soit A une matrice de $\mathcal{S}_n(\mathbb{R})$. On notera $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ ses valeurs propres, on notera $D = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$, P la matrice de $\mathcal{O}_n(\mathbb{R})$ vérifiant $A = P D^t P$ et $C_1, C_2, ..., C_n$ les matrices de $\mathcal{M}_{n,1}(\mathbb{R})$ formant les colonnes de la matrice P.

Si k est un entier entre 1 et n, on note Ψ_k l'ensemble des sous-espaces vectoriels de $\mathcal{M}_{n,1}(\mathbb{R})$ de dimension k. Nous allons montrer que :

$$\lambda_k = \max_{F \in \Psi_k} \min_{X \in F - \{0\}} \frac{{}^t X \ A \ X}{{}^t X \ X} \quad \text{(th\'eor\`eme de Courant et Fischer)}.$$

- **19.** Soit X un vecteur de $\mathcal{M}_{n,1}(\mathbb{R})$ de coordonnées $(x_1, x_2, ..., x_n)$ dans la base orthonormée $(C_1, C_2, ..., C_n)$ de $\mathcal{M}_{n,1}(\mathbb{R})$. Calculer en fonction des x_i et λ_i (i compris entre 1 et n): ${}^tX \ A \ X \ \text{et} \ {}^tX \ X \ \text{et pour } k \text{ entier entre 1 et } n, \frac{{}^tC_k \ A \ C_k}{{}^tC_l \ C_l}.$
- **20.** Soit k entier entre 1 et n, on pose $F_k = \text{vect}\{C_1, C_2, ..., C_k\}$.

 Montrer que pour tout X non nul de F_k , $\frac{{}^t X \ A \ X}{{}^t X \ X} \ge \lambda_k$ et déterminer $\min_{X \in F_k \{0\}} \frac{{}^t X \ A \ X}{{}^t X \ X}$.
- **21.** Soit $F \in \Psi_k$,
 - **a.** montrer que dim $(F \cap \text{vect}\{C_k, C_{k+1}, ..., C_n\}) \ge 1$.
 - **b.** Si *X* est un vecteur non nul de $F \cap \text{vect}\{C_k, C_{k+1}, ..., C_n\}$, montrer que $\frac{{}^t X A X}{{}^t X X} \leq \lambda_k$.
- **22.** Conclure.
- **B.** Calcul de $d(A, \nabla_p)$

<u>Dans toute cette partie</u>: A est une matrice de $\mathcal{M}_n(\mathbb{R})$ de rang r et p est un entier naturel, p < r.

- **23.** Montrer qu'il existe deux matrices E et P de $\mathcal{O}_n(\mathbb{R})$ et une matrice diagonale D à termes positifs telles que A = E D P. En déduire que le rang de la matrice tA A est encore r. (On pourra utiliser les résultats de la question **9.**)
- **24.** Si on note les valeurs propres de la matrice symétrique réelle tA A de rang r: $\mu_1 \ge \mu_2 \ge ... \ge \mu_r > 0$ et $\mu_{r+1} = ... = \mu_n = 0$, si on pose $D = \operatorname{diag}(\sqrt{\mu_1}, \sqrt{\mu_2}, ..., \sqrt{\mu_r}, 0, ..., 0)$, si pour $1 \le l \le n$ on note M_l la matrice de $\mathcal{M}_n(\mathbb{R})$ dont la l-ième colonne est celle de la matrice $E \in \mathcal{O}_n(\mathbb{R})$ de la question **23.**, tous les autres termes de M_l étant nuls, on a clairement : $ED = \sum_{l=1}^n \sqrt{\mu_l} M_l$.

Montrer alors qu'il existe une famille orthonormale $(R_1, R_2,, R_n)$ de matrices de $\mathcal{M}_n(\mathbb{R})$ (pour le produit scalaire $(A \mid B) = \operatorname{Tr}({}^t A B)$ de $\mathcal{M}_n(\mathbb{R})$), toutes de rang un, et telles que $A = \sum_{l=1}^{n} \sqrt{\mu_l} \ R_l = \sum_{l=1}^{r} \sqrt{\mu_l} \ R_l$.

- **25.** Avec les notations de la question **24,** on pose $N = \sum_{l=1}^{p} \sqrt{\mu_l} \ R_l$. Montrer que rang $(N) \le p$ puis que $d(A, \nabla_p) \le \sqrt{\mu_{p+1} + ... + \mu_r}$.
- **26.** Soit M une matrice de rang p (p < r), on note $\alpha_1 \ge \alpha_2 \ge ... \ge \alpha_n \ge 0$ les valeurs propres de la matrice ${}^t(A-M)$ (A-M) et on pose $G = \operatorname{Ker} M \cap \operatorname{Im}({}^tA A)$. Soit k un entier compris entre 1 et r-p.
 - **a.** Montrer que dim $G \ge r p$.
 - **b.** Soit F un sous-espace vectoriel de G de dimension k, montrer que :

$$\alpha_k \ge \min_{X \in F - \{0\}} \frac{{}^t X {}^t A A X}{{}^t X X}.$$

c. On note $(V_1, V_2, ..., V_n)$ une base de \mathbb{R}^n formée de vecteurs propres de la matrice ${}^t A A$, le vecteur V_i étant associé à la valeur propre μ_i de telle sorte que : $\mu_1 \geq \mu_2 \geq ... \geq \mu_r > 0$ et $\mu_{r+1} = ... = \mu_n = 0$.

Montrer que dim $(G \cap \text{vect}\{V_1, V_2, ..., V_{k+p}\}) \ge k$.

- **d.** En déduire que $\alpha_k \ge \mu_{k+p}$.
- **27.** En déduire $d(A, \nabla_p)$.
- **28.** Calculer, pour $p \in \{0, 1, 2, 3\}$, $\gamma_p = d(\Gamma, \nabla_p)$ où Γ est la matrice exemple de la partie I.

Fin de l'énoncé.