Les calculatrices sont autorisées.

N.B. Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Le sujet comporte 6 pages.

Notations:

On note:

• N : l'ensemble des entiers naturels,

• R : l'ensemble des nombres réels,

• \mathbb{C} : l'ensemble des nombres complexes.

Pour z appartenant à \mathbb{C} , on note |z| son module.

Pour tout entier naturel n, on note :

- n! la factorielle de n avec la convention 0!=1,
- [0,n] l'ensemble des entiers naturels k vérifiant $0 \le k \le n$,
- $\binom{n}{k}$ le nombre de parties ayant k éléments d'un ensemble de n éléments, pour $k \in \llbracket 0, n \rrbracket$.

On rappelle:

• la valeur de
$$\binom{n}{k}$$
 : $\frac{n!}{k!(n-k)!}$ pour $k \in [0,n]$,

• la formule du binôme : si z_1 et z_2 sont des nombres complexes et n un entier naturel,

alors:
$$(z_1 + z_2)^n = \sum_{k=0}^n \binom{n}{k} z_1^k z_2^{n-k}$$
.

Enfin si n est un entier naturel non nul on note σ_n la somme $\sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ et on pose $\sigma_0 = 0$.

Objectifs:

Dans les parties I et II on étudie un procédé de sommation, la partie III est consacrée à l'étude de diverses fonctions et en particulier une fonction φ à laquelle on applique ledit procédé de sommation.

Étude d'un procédé de sommation

Dans les parties I et II les notations utilisées sont les suivantes :

Toute application de \mathbb{N} dans \mathbb{C} étant une suite complexe, si a est une telle suite, on utilise la notation usuelle $a(n) = a_n$.

Á toute suite complexe a, on associe la suite a^* définie par : pour tout $n \in \mathbb{N}$, $a_n^* = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} a_k$.

L'objet des parties I et II est de comparer les propriétés de la série $\sum_{n\geq 0} a_n^*$ aux propriétés de la série $\sum_{n\geq 0} a_n$.

PARTIE I

Deux exemples

I.1/ Cas d'une suite constante.

Soit $\alpha \in \mathbb{C}^*$; on suppose que la suite α est définie par : pour tout $n \in \mathbb{N}$, $a_n = \alpha$.

I.1.1/Expliciter
$$\sum_{k=0}^{n} \binom{n}{k}$$
 pour $n \in \mathbb{N}$.

I.1.2/Expliciter a_n^* pour $n \in \mathbb{N}$.

I.1.3/La série
$$\sum_{n\geq 0} a_n$$
 (resp. $\sum_{n\geq 0} a_n^*$) est –elle convergente?

I.2/ Cas d'une suite géométrique.

Soit $z \in \mathbb{C}$; on suppose que la suite a est définie par : pour tout $n \in \mathbb{N}$, $a_n = z^n$.

- **I.2.1**/Exprimer a_n^* en fonction de z et n.
- **I.2.2**/On suppose que |z| < 1.
 - **I.2.2.1**/ Justifier la convergence de la série $\sum_{n\geq 0} a_n$ et expliciter sa somme $A(z) = \sum_{n=0}^{+\infty} a_n$.
 - **I.2.2.2**/ Justifier la convergence de la série $\sum_{n\geq 0} a_n^*$ et expliciter sa somme $\sum_{n=0}^{+\infty} a_n^*$ en fonction de A(z).
- **I.2.3**/On suppose que $|z| \ge 1$.
 - **I.2.3.1**/ Quelle est la nature (convergente ou divergente) de la série $\sum_{n>0} a_n$?
 - **I.2.3.2**/ Quelle est la nature de $\sum_{n\geq 0} a_n^*$ si z=-2?
 - **I.2.3.3**/ On suppose que $z=e^{i\theta}$, avec θ réel tel que $0<|\theta|<\pi$ Montrer que la série $\sum_{n\geq 0}a_n^*$ est convergente. Calculer la partie réelle et la partie imaginaire de la somme $\sum_{n=0}^{+\infty}a_n^*$.

PARTIE II

Étude du procédé de sommation

Dans cette partie, et pour simplifier, on suppose que la suite a est à valeurs réelles, la suite a^* étant toujours définie par : pour tout $n \in \mathbb{N}$, $a_n^* = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} a_k$.

- II.1/ Comparaison des convergences des deux suites.
 - II.1.1/ Soit $n \in \mathbb{N}^*$, on considère un entier $k \in [0, n]$.
 - II.1.1.1/ Préciser un équivalent de $\binom{n}{k}$ lorsque n tend vers $+\infty$.
 - II.1.1.2/ En déduire la limite de $\frac{1}{2^n} \binom{n}{k}$ lorsque n tend vers $+\infty$.
 - II.1.2/ Soient a une suite réelle et q un entier naturel $\underline{\text{fixé}}$.

On considère pour n > q la somme $S_q(n,a) = \sum_{k=0}^{q} {n \choose k} \frac{a_k}{2^n}$.

Quelle est la limite de $S_q(n,a)$ lorsque l'entier n tend vers $+\infty$?

- **II.1.3**/ On suppose que a_n tend vers 0 lorsque n tend vers $+\infty$; Montrer que a_n^* tend vers 0 lorsque n tend vers $+\infty$.
- II.1.4/ On suppose que a_n tend vers l (limite finie) lorsque n tend vers $+\infty$. Quelle est la limite de a_n^* lorsque n tend vers $+\infty$?
- II.1.5/ La convergence de la suite $(a_n)_{n\in\mathbb{N}}$ est-elle équivalente à la convergence de la suite $(a_n^*)_{n\in\mathbb{N}}$?
- II.2/ Comparaison des convergences des séries $\sum_{n>0} a_n$ et $\sum_{n>0} a_n^*$.

Pour
$$n \in \mathbb{N}$$
, on note $S_n = \sum_{k=0}^n a_k$, $T_n = \sum_{k=0}^n a_k^*$, $U_n = 2^n T_n$.

- II.2.1/ Pour $n \in [0,3]$, exprimer U_n comme combinaison linéaire des sommes S_k , c'est à dire sous la forme $U_n = \sum_{k=0}^n \lambda_{n,k} S_k$.
- II.2.2/ On se propose de déterminer l'expression explicite de U_n comme combinaison linéaire des sommes S_k pour $k \in [0, n]$:

$$\begin{pmatrix} \mathcal{C} \end{pmatrix}$$
 $U_n = \sum_{k=0}^n \lambda_{n,k} S_k \text{ pour } n \in \mathbb{N}.$

- II.2.2.1/ A quelle expression des coefficients $\lambda_{n,k}$ (en fonction de n et k) peut-on s'attendre compte tenu des résultats obtenus à la question II.2.1?
- II.2.2.2/ Etablir la formule $\binom{\mathcal{E}}{\ell}$ par récurrence sur l'entier n (on pourra remarquer que pour tout $k \in \llbracket 0, n \rrbracket$: $a_k = S_k S_{k-1}$ avec la convention $S_{-1} = 0$).
- II.2.3/ On suppose que la série $\sum_{n>0} a_n$ est convergente.

Montrer que la série
$$\sum_{n\geq 0} a_n^*$$
 est convergente et exprimer la somme $\sum_{n=0}^{+\infty} a_n^*$ en fonction de la somme $\sum_{n=0}^{+\infty} a_n$.

II.2.4/ La convergence de la série $\sum_{n\geq 0} a_n$ est-elle équivalente à la convergence de la série $\sum_{n\geq 0} a_n^*$?

PARTIE III

Une étude de fonctions

On rappelle que : $\sigma_n = \sum_{k=1}^n \frac{1}{k}$ pour $n \in \mathbb{N}^*$ et $\sigma_0 = 0$.

Pour x réel, lorsque cela a du sens, on pose :

$$f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{(n+1)!}; \quad g(x) = \sum_{n=0}^{+\infty} \frac{\sigma_n x^n}{n!}; \qquad \varphi(x) = \sum_{n=0}^{+\infty} \sigma_n x^n.$$

III.1/ Étude de f.

- III.1.1/ Vérifier que f est définie et continue sur $\mathbb R$.
- III.1.2/ Expliciter xf(x) pour tout x réel.
- III.1.3/ Expliciter $e^{-x} f(x)$ pour tout x réel.

III.2/ Étude de g.

- III.2.1/ Montrer que g est définie et de classe \mathcal{C}' sur \mathbb{R} .
- III.2.2/ On désigne par g' la dérivée de la fonction g; exprimer g'-g en fonction de f.
- III.2.3/ Montrer que pour tout x réel :

$$g(x) = e^x \int_0^x e^{-t} f(t) dt.$$

III.3/ La fonction F.

On considère la fonction F définie sur $\mathbb R$ par :

$$F(x) = \int_0^x e^{-t} f(t) dt.$$

- III.3.1/ Montrer que la fonction F est développable en série entière sur \mathbb{R} et expliciter son développement.
- III.3.2/ Pour $n \in \mathbb{N}^*$, on note $\gamma_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k(k!)(n-k)!}$.

Exprimer γ_n en fonction de n et σ_n .

III.4/ La série
$$\sum_{k\geq 1} \frac{\left(-1\right)^{k+1}}{k}$$
.

Pour $n \in \mathbb{N}^*$ on note $\ln(n)$ le logarithme repérien de n.

III.4.1/ Soit
$$w_k = \ln\left(\frac{k+1}{k}\right) - \frac{1}{k+1}$$
 pour $k \in \mathbb{N}^*$

III.4.1.1/ Montrer que la série
$$\sum_{k\geq 1} w_k$$
 est convergente.

III.4.1.2/ En déduire que la suite de terme général $\sigma_n - \ln(n)$ admet une limite finie (que l'on ne demande pas de calculer) lorsque n tend vers $+\infty$.

III.4.2/ Pour
$$n \in \mathbb{N}^*$$
, on pose $\tau_n = \sum_{k=1}^n \frac{\left(-1\right)^{k+1}}{k}$; exprimer τ_{2n} en fonction de σ_{2n} et σ_n .

III.4.3/ Montrer en utilisant III.4.1 et III.4.2 que la série
$$\sum_{k\geq 1} \frac{\left(-1\right)^{k+1}}{k}$$
 est convergente et déterminer sa somme $\sum_{k=1}^{+\infty} \frac{\left(-1\right)^{k+1}}{k}$.

III.5/ Étude de la fonction φ .

On rappelle que pour x réel $\varphi(x) = \sum_{n=0}^{+\infty} \sigma_n x^n$.

III.5.1/ Déterminer le rayon de convergence
$$R$$
 de la série entière $\sum_{n\geq 1} \sigma_n x^n$.

III.5.2/ Préciser l'ensemble de définition
$$\Delta$$
 de la fonction φ , et étudier ses variations sur $[0,R[$.

III.5.3/ Valeur de
$$\varphi\left(\frac{1}{2}\right)$$
.

En utilisant les résultats de la partie II et de la question III.4.3 expliciter la valeur de $\varphi\left(\frac{1}{2}\right)$.

III.5.4/ Expliciter
$$\varphi(x)$$
 pour x appartenant à Δ et retrouver la valeur de $\varphi(\frac{1}{2})$.