Concours Commun Mines-Ponts 2006 - PSI - Maths 2 (3H)

1. La matrice tMAM est élément de de $\mathcal{M}_{p,p}$, sa transposée est ${}^tM{}^tA{}^t({}^tM) = {}^tMAM$ car A est symétrique.

Pour tout $X \in \mathcal{M}_{p,1}$ on observe que :

$$({}^{t}MAMX \mid X) = (AMX \mid MX) \geqslant 0$$

car A est positive. La matrice ${}^{t}MAM$ est donc bien positive.

On peut remarquer que si A est définie positive et que M est régulière (ce qui implique n=p), alors ${}^t\!MAM$ est définie positive. En effet dans ce cas, si $X\neq 0$, alors $MX\neq 0$ et comme A est définie positive :

$$({}^{t}MAMX \mid X) = (AMX \mid MX) > 0$$

2. Si $A \in \mathcal{S}_n$ toutes ses puissances sont symétriques puisque pour tout $p \in \mathbb{N}$, ${}^t(A^p) = {}^t(A)^p = A^p$.

Les puissances d'ordre pair sont nécessairement positives, car pour tout entier $k \in \mathbb{N}$ et $X \in \mathcal{M}_{n,1}$:

$$(A^{2k}X \mid X) = (A^kX \mid A^kX) \geqslant 0$$

puisque c'est un carré scalaire.

Si de plus A est positive, ses puissances d'ordre impair sont positives, puisque pour tout entier k, $A^{2k+1} = {}^t(A^k) A A^k$, qui est positive d'après la question 1.

3. Supposons que A soit positive (resp. définie positive) et soit λ une valeur propre de A. Il existe un vecteur $X \in \mathcal{M}_{n,1}$ non nul tel que $AX = \lambda X$. Si A est positive :

$$(AX \mid X) = (\lambda X \mid X) = \lambda (X \mid X) \geqslant 0$$

l'inégalité étant stricte si A est définie positive. Comme $(X \mid X) > 0$, puisque $X \neq 0$, on en déduit que si A est positive $\lambda \geqslant 0$ et si A est définie positive, $\lambda > 0$.

Réciproquement supposons que les valeurs propres de A soient toutes $\geqslant 0$ (resp. > 0). On sait que A, étant réelle symétrique, est diagonalisable en base orthonormée. Il existe donc une matrice orthogonale P et une matrice diagonale P0 telles que P1 de P2 (puisque P2 est orthogonale). D'après la question 1 (et la remarque faite) il suffit de prouver que la matrice P3 est positive (resp. définie positive).

Les matrices A et Δ étant semblables elles ont les mêmes valeurs propres qui sont donc positives (resp. > 0); ces valeurs propres sont les coefficients diagonaux de Δ que nous noterons $(\lambda_i)_{i=1..n}$. Pour tout vecteur $X \in \mathcal{M}_{n,1}$ de coordonnées $(x_i)_{i=1..n}$ on a :

$$(\Delta X \mid X) = \sum_{i=1}^{n} \lambda_i x_i^2 \geqslant 0$$

Si de plus $X \neq 0$ et que les valeurs propres sont > 0, alors :

$$(\Delta X \mid X) = \sum_{i=1}^{n} \lambda_i x_i^2 > 0$$

La matrice A est donc positive (resp. définie positive).

4. Remarquons qu'il est nécessaire que A soit positive pour qu'il existe une matrice C (symétrique) telle que $A=C^2$ d'après la remarque de la question 2. Montrons que cette condition est aussi suffisante pour qu'il existe une matrice C symétrique telle que $C^2=A$. En effet, si A est positive, il existe une matrice diagonale Δ de coefficients diagonaux $(\lambda_i)_i$ positifs et une matrice orthogonale P telles que $A=P^{-1}\Delta P$. Les coefficients diagonaux de Δ étant positifs, ils ont des racines carrées et si Δ_1 est la matrice diagonale de coefficients diagonaux $(\sqrt{\lambda_i})_i$, on obtient en posant $C=P^{-1}\Delta_1 P$:

$$C^2 = P^{-1}\Delta_1^2 P = P^{-1}\Delta P = A$$

La matrice C est bien symétrique car Δ est symétrique et $P^{-1} = {}^tP$, et elle est positive car ses valeurs propres sont positives. Bien entendu si A est définie positive, les λ_i sont > 0 donc les $\sqrt{\lambda_i}$ sont > 0, donc la matrice C trouvée est définie positive.

5. Soit $\lambda \in \mathbb{R}_+$. Il est clair que si $X \in \mathcal{M}_{n,1}$ est tel que $CX = \sqrt{\lambda} X$ alors $AX = C^2X = \lambda X$. On en déduit pour tout $\lambda \in \mathbb{R}_+$ l'inclusion

$$\operatorname{Ker}(C - \sqrt{\lambda} \operatorname{I}_n) \subset \operatorname{Ker}(A - \lambda \operatorname{I}_n)$$

Pour établir l'inclusion opposée considérons les endomorphismes symétriques a et c de l'espace $\mathcal{M}_{n,1}$ associés aux matrices A et C. Comme $c^2=a, a$ et c commutent, donc $a-\lambda \mathrm{Id}$ commute avec c; on en déduit que le sous-espace $N=\mathrm{Ker}(A-\lambda \mathrm{I}_n)=\mathrm{Ker}(a-\lambda \mathrm{Id})$ est stable par c. L'endomorphisme symétrique c, supposé positif, induit donc sur N un endomorphisme symétrique et positif c_1 tel que $c_1^2=\lambda \mathrm{Id}_N$. L'endomorphisme c_1 est diagonalisable (en BON) et les valeurs propres de c_1 sont nécessairement des racines carrées de λ ; comme elles sont de plus positives, cela implique que ces valeurs propres ne peuvent être que $\sqrt{\lambda}$; on en déduit $c_1=\sqrt{\lambda}\mathrm{Id}_N$. Cela implique l'inclusion $\mathrm{Ker}(a-\lambda\mathrm{Id})\subset\mathrm{Ker}(c-\sqrt{\lambda}\mathrm{Id})$ et finalement l'égalité de ces noyaux.

N.B. On ne suppose pas que λ soit effectivement une valeur propre de A, ni que A et C soient définies positives (on suppose seulement que A et C sont positives).

6. Reprenons pour plus de clarté les endomorphismes associés au matrices. L'espace $\mathcal{M}_{n,1}$ est somme directe des sous-espaces propres de a et si λ est une valeur propre de a, sur l'espace propre $\operatorname{Ker}(a-\lambda\operatorname{Id})$ l'endomorphisme c coïncide d'après la question précédente avec $\sqrt{\lambda}\operatorname{Id}$; cela implique, par le théorème de définition d'une application linéaire dans une somme directe,

l'unicité de c. Il existe donc une unique matrice C symétrique et positive telle que $C^2=A$. Si de plus A est définie positive, d'après la question 4) cette matrice est définie positive.

D'après la question 5) tout vecteur propre de A est aussi vecteur propre de C, donc toute base de vecteurs propres de A est aussi une base de vecteurs propres de C. Il faut supposer que c'est ce qu'entend l'auteur de l'énoncé par l'expression :

"dans toute base \dots la matrice C est diagonale"

- 7. Comme A est définie positive ses valeurs propres sont > 0, donc non nulles, donc A est inversible. La matrice A^{-1} est aussi symétrique et ses valeurs propres sont les inverses des valeurs propres de A donc aussi > 0. La matrice A^{-1} est donc symétrique définie positive et, d'après ce qui précède, il existe une unique matrice symétrique positive C' telle $C'^2 = A^{-1}$; C' est définie positive; $C' = A^{-1/2}$.
- 8. Notons C la matrice symétrique positive telle que $C^2 = A$; la matrice C^{-1} est aussi symétrique et définie positive et $(C^{-1})^2A = C^{-1}C^{-1}CC = I_n$, donc $(C^{-1})^2 = A^{-1}$. Par unicité on en déduit $C^{-1} = C'$ ou encore avec les notations de l'énoncé : $(A^{1/2})^{-1} = A^{-1/2}$.
- 9. On peut remarquer que $A \leq B$ si, et seulement si, pour tout $X \in \mathcal{M}_{n,1}$, $(AX \mid X) \leq (BX \mid X)$, puisqu'on a l'égalité :

$$(BX | X) - (AX | X) = ((B - A)X | X)$$

La relation est donc trivialement réflexive et transitive. Si $A \leq B$ et $B \leq A$, les formes quadratiques associées aux matrices symétriques A et B sont identiques, donc ces matrices sont identiques. La relation est donc aussi antisymétrique.

- 10. Remarquons que ${}^tCBC {}^tCAC = {}^tC(B-A)C$. Si $A \leq B$, la matrice B-A est positive et d'après la question 1 la matrice ${}^tC(B-A)C$ est aussi positive. On en déduit ${}^tCAC \leq {}^tCBC$.
- 11. Si $I_n \leq A$, pour tout $X \in \mathcal{M}_{n,1}$ non nul on a

$$0 < (X \mid X) \leqslant (AX \mid X)$$

donc A est définie positive et par conséquent inversible (question 7). On peut appliquer la question 10 en remplaçant A par I_n , B par A et C par la matrice symétrique $A^{-1/2}$ introduite dans la question 7. On trouve :

$$A^{-1/2}I_nA^{-1/2} \preceq A^{-1/2}AA^{-1/2} = A^{-1/2}A^{1/2}A^{1/2}A^{-1/2}$$

En appliquant le résultat de la question 8 on en déduit :

$$A^{-1} \leq I_n$$

12. Par définition la matrice A est définie positive; pour tout $X \neq 0$, $(BX \mid X) \geqslant (AX \mid X) > 0$, donc B est aussi définie positive, et par conséquent inversible.

Soit C la matrice symétrique définie positive telle que $C^2=A.$ On a :

$$A \leq B$$
 donc $I_n = C^{-1}AC^{-1} \leq C^{-1}BC^{-1}$

D'après la question 11 on en déduit :

$$CB^{-1}C \preceq I_n$$
 d'où $B^{-1} = C^{-1}CB^{-1}CC^{-1} \preceq C^{-1}C^{-1} = (C^2)^{-1} = A^{-1}$

- 13. On sait que les valeurs propres de la matrice (symétrique) D sont les zéros du polynôme $X^2-(a+c)X+ac-b^2$. La matrice D est positive si, et seulement si, les racines de ce polynôme sont positives (question 3). Une CNS est que le produit et la somme des racines soient tous les deux ≥ 0 , soit $a+d \geq 0$ et $ac \geq b^2$.
- 14. Comme:

$$B - D = \begin{bmatrix} a & -b \\ -b & 1 \end{bmatrix}$$

les conditions $0 \leq D$ et $D \leq B$ sont toutes les deux équivalentes à :

$$a+1 \geqslant 0$$
 et $a \geqslant b^2$

Enfin comme la deuxième condition implique la première, on obtient la CNS : $a \geqslant b^2$.

D'autre part:

$$D^{2} = \begin{bmatrix} a^{2} + b^{2} & (a+1)b \\ (a+1)b & b^{2} + 1 \end{bmatrix} \quad B^{2} = \begin{bmatrix} 4a^{2} & 0 \\ 0 & 4 \end{bmatrix}$$

donc

$$B^{2} - D^{2} = \begin{bmatrix} 3a^{2} - b^{2} & -(a+1)b \\ -(a+1)b & 3 - b^{2} \end{bmatrix}$$

On obtient par conséquent :

$$tr(B^2 - D^2) = 3(a^2 + 1) - 2b^2 \quad det(B^2 - D^2) = (3a^2 - b^2)(3 - b^2) - b^2(a + 1)^2$$

La trace est toujours > 0 puisque si $a \ge b^2$ on a :

$$tr(B^2 - D^2) = 3(a^2 + 1) - 2b^2 \geqslant 3(a^2 + 1) - 2a = 2(a^2 + 1) + (a - 1)^2$$

mais pour $a = b^2$:

$$\det(B^2 - D^2) = (3a^2 - a)(3 - a) - a(a + 1)^2 =$$

$$= -a((3a - 1)(a - 3) + (a + 1)^2) =$$

$$= -a(4a^2 - 8a + 4) = -4a(a - 1)^2 = -4b^2(b^2 - 1)^2$$

On en déduit que si $b \neq 0, b \neq 1$ et $a = b^2,$ on a $D^2 \not \leq B^2$ alors que $0 \leq D \leq B.$

- 15. Posons $P^{-1}X = Y$; comme $P\Delta P^{-1}X = \lambda X$ on en déduit $\Delta Y = \lambda Y$. Notons (y_i) les coordonnées de Y; l'égalité précédente s'écrit $\forall i \ \lambda_i y_i = \lambda y_i$; si i est tel que $\lambda_i \neq \lambda$, alors $y_i = 0$. D'autre part $RX = Pf(\Delta)P^{-1}X$, donc $P^{-1}RX = f(\Delta)Y$; ce vecteur a pour coordonnées $(f(\lambda_i)y_i)_i$; si $\lambda_i \neq \lambda$, $y_i = 0$ donc $f(\lambda_i)y_i = f(\lambda)y_i$ et si $\lambda_i = \lambda$ alors $f(\lambda_i)y_i = f(\lambda)y_i$; on en déduit l'égalité $P^{-1}RX = f(\lambda)Y$ et finalement $RX = f(\lambda)X$.
- 16. Posons $R_P = Pf(\Delta_P)P^{-1}$ et $R_Q = Qf(\Delta_Q)Q^{-1}$. D'après la question 15 les endomorphismes associés aux matrices R_P et R_Q coïncident sur les espaces propres de M et comme M est diagonalisable, l'espace $\mathcal{M}_{n,1}$ est somme directe des espaces propres de M. Les endomorphismes associés aux matrices R_P et R_Q sont donc identiques; on en déduit $R_P = R_Q$.
- 17. Pour tout $r \in \mathbb{R}$, la fonction φ_r est continue sur $]0,+\infty[$. La fonction $s \mapsto s\varphi_r(s)$ est intégrable sur]0,1] si, et seulement si, r<1 (règle de Riemann), et la fonction φ_r est intégrable au voisinage de $+\infty$ si, et seulement si, r>0 ((règle de Riemann). La fonction φ_r est donc élément de E si, et seulement si, 0< r<1.

En posant u = st dans l'intégrale (pour t > 0) on obtient facilement :

$$L_{\varphi_r}(t) = \int_0^{+\infty} \frac{t \, \mathrm{d}s}{(1+st)s^r} = t^r \int_0^{+\infty} \frac{\mathrm{d}u}{(1+u)u^r} = t^r \varphi_r(1)$$

18. Posons $A = P\Delta P^{-1}$ où P est une matrice orthogonale et Δ est diagonale, de coefficients diagonaux ≥ 0 puisque A est positive. Notons $(\lambda_i)_i$ les coefficients diagonaux de Δ . La matrice $I_n + s\Delta$ a pour coefficients diagonaux la famille $(1 + s\lambda_i)_i$ (tous > 0), son inverse $(I_n + s\Delta)^{-1}$ a pour coefficients diagonaux la famille $((1 + s\lambda_i)^{-1})_i$ et la matrice $I_n - (1 + s\Delta)^{-1}$ a donc pour coefficients diagonaux la famille $(1 - (1 + s\lambda_i)^{-1})_i$; il s'agit par conséquent de la matrice $f_s(\Delta)$. De l'égalité :

$$f_s(\Delta) = I_n - (1 + s\Delta)^{-1}$$

on tire sans difficultés :

$$f_s(A) = Pf_s(\Delta)P^{-1} = P(I_n - (1 + s\Delta)^{-1})P^{-1} = I_n - (1 + sA)^{-1}$$

car l'application $M\mapsto PMP^{-1}$ est un automorphisme de l'algèbre \mathcal{M}_n .

- 19. Supposons $0 \leq A \leq B$; on a évidemment $sA \leq sB$ puisque s > 0 et $I_n + sA \leq I_n + sB$ (la différence est positive); on a aussi $0 < I_n \leq I_n + sA$. D'après la question 12 on en déduit $(I_n + sB)^{-1} \leq (I_n + sA)^{-1}$ puis enfin par différence $f_s(A) \leq f_s(B)$. La fonction f_s est donc matriciellement croissante sur \mathbb{R}_+ .
- 20. Pour $t \in \mathbb{R}_+$ on remarque que $L_{\varphi}(t) = \int_0^{+\infty} f_s(t) \varphi(s) \, ds$. Montrons que pour tout $X, Y \in \mathcal{M}_{n,1}$ on a l'égalité :

$$(L_{\varphi}(A)X \mid Y) = \int_{0}^{+\infty} (f_{s}(A)X \mid Y) \, \mathrm{d}s$$

Si X vérifie $AX = \lambda X$ alors pour tout s > 0, $f_s(A)X = f_s(\lambda)X$ et $L_{\varphi}(A)X = L_{\varphi}(\lambda)X$ (question 15); dans ce cas :

$$(L_{\varphi}(A)X \mid Y) = L_{\varphi}(\lambda) (X \mid Y) = (X \mid Y) \int_{0}^{+\infty} f_{s}(\lambda)\varphi(s) \, ds =$$

$$= \int_{0}^{+\infty} (X \mid Y) f_{s}(\lambda)\varphi(s) \, ds =$$

$$= \int_{0}^{+\infty} (f_{s}(\lambda)X \mid Y) \varphi(s) \, ds =$$

$$= \int_{0}^{+\infty} (f_{s}(A)X \mid Y) \varphi(s) \, ds$$

Cette égalité s'étend par linéarité à toute somme de vecteurs propres de A donc à tout $X \in \mathcal{M}_{n,1}$ puisque A est diagonalisable. Enfin pour Y = X on obtient l'égalité à démontrer.

- 21. L'application f_s étant matriciellement croissante sur \mathbb{R}_+ (question 19) il est clair par monotonie de l'intégrale, et la question précédente, que l'application L_{φ} est matriciellement croissante sur \mathbb{R}_+ .
- 22. Pour $r \in]0,1[$ l'application φ_r est élément de E (question 17). L'application L_{φ_r} est alors matriciellement croissante sur \mathbb{R}_+ . Or pour tout t>0 on a : $L_{\varphi_r}(t)=t^rL_{\varphi_r}(1)$, ce qui est vrai aussi pour t=0. Comme $L_{\varphi_r}(1)=\int_0^{+\infty}\frac{\mathrm{d}\,s}{(1+s)s^r}>0$ on en déduit que l'application $t\mapsto t^r$ est matriciellement croissante sur \mathbb{R}_+ .