MATHEMATIQUES II-B PT-97

I PARTIE PRELIMINAIRE

Dérivabilité de F

Définissons $H(x,t) = \int_{c}^{t} f(x,y)dy$ pour $(x, t) \in Ix[c, d]$.

D'après le théorème de Leibniz, H admet une dérivée partielle par rapport à x, continue, et $\frac{\partial H}{\partial x}(x,t) = \int_{c}^{t} \frac{\partial f}{\partial x}(x,y)dy$. De plus H admet une dérivée partielle par

rapport à t, continue, avec $\frac{\partial H}{\partial t}(x,t) = f(x,t)$.

F(x)=H(x, g(x)), donc par composition, F est dérivable sur I et :

$$F'(x) = \frac{\partial H}{\partial x}(x, g(x)) + \frac{\partial H}{\partial t}(x, g(x))g'(x).$$

Il en résulte que $F'(x) = \int_{c}^{g(x)} \frac{\partial f}{\partial x}(x, y) dy + f(x, g(x))g'(x)$.

II PARTIE B

1) Calcul de u

 $\frac{\partial^2 u}{\partial v^2} = p'(x)$; Il existe donc 2 fonctions, λ et μ de la variable x telles que :

$$u(x,y) = \frac{y^2}{2} p'(x) + \lambda(x)y + \mu(x) \cdot \mathbf{u}(x,0) = \mathbf{V} \iff \mu(x) = \mathbf{V}.$$

$$u(x,-h(x))=0 \Leftrightarrow \lambda(x)=\frac{V}{h(x)}+\frac{h(x)}{2}p'(x).$$

Finalement,
$$u(x, y) = \frac{y^2}{2} p'(x) + y \left(\frac{V}{h(x)} + \frac{h(x)}{2} p'(x) \right) + V$$
.

On notera que la réciproque est immédiate.

2) Q'(x)=0

$$Q(x) = -\int_{0}^{-h(x)} u(x,y)dy$$
. On utilise la partie préliminaire : Q est dérivable sur R et,
$$Q'(x) = -\int_{0}^{-h(x)} \frac{\partial u}{\partial x}(x,y)dy + h'(x)u(x,-h(x)).$$

$$Q'(x) = -\int_{-h(x)}^{0} \frac{\partial v}{\partial y}(x, y) dy$$
. (car u(x,-h(x)=0 et $\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y}$).

$$Q'(x) = -[v(x,y)]_{h(x)}^{0} = -v(x,0) + v(x,-h(x)) = 0$$

En conséquence, Q' est nulle sur R.

<u>3)</u>

Reprenons l'expression de u(x,y) obtenue à la question 1 de cette partie.

$$Q(x) = \int_{-h(x)}^{0} u(x, y) dy = \left[\frac{y^3}{6} p'(x) + \frac{y^2}{2} \left(\frac{V}{h(x)} + \frac{h(x)}{2} p'(x) \right) + Vy \right]_{-h(x)}^{0}.$$

Par conséquent, $Q(x) = \frac{1}{2}Vh(x) - \frac{1}{12}h^3(x)p'(x)$.

Comme Q'(x)=0, on déduit l'égalité : $\forall x \in R$ $\frac{d}{dx} (h^3(x)p'(x)) = 6Vh'(x)$

III PARTIE C

1a)

h est une fonction L-périodique, h(R)=h([0,L]). De plus, h est <u>continue</u> sur R, à valeurs dans R^{**} , l'image par h de l'intervalle fermé borné [0,L], est un segment $[h_0,h_1]$ $(0<h_0<h_1)$, inclus dans R^{**} . h_0 (resp.h₁) est le minimum (resp. maximum) de h sur R et h atteint ses bornes.

<u>1b)</u>

p vérifie sur [0,L] les hypothèses du théorème de Rolle. Sa dérivée p' s'annule sur l'ouvert]0,L[.

<u>2a</u>

D'après la question 3 de la partie B, il existe une constante α unique telle que $h^3(x)p'(x) = 6Vh(x) + \alpha$. Si x_0 est tel que $p'(x_0)=0$, celà équivaut à $h(x_0) = \frac{-\alpha}{6V}$. Soit h^* cette valeur : $\alpha = -6Vh^*$.

<u>2b</u>

On déduit l'égalité $h^3(x)p'(x) = 6V(h(x) - h^*)$.

Or
$$\int_{0}^{L} p'(x)dx = p(L) - p(0) = 0$$
. Donc $6V \left[\int_{0}^{L} \frac{dx}{h^{2}(x)} - \int_{0}^{L} \frac{h^{*}}{h^{3}(x)} dx \right] = 0$.

D'où
$$h^* = \int_{0}^{L} \frac{dx}{h^2(x)}$$
.

<u>2c</u>

 $\begin{aligned} & h_0^2 h(x)^2 h_1, \text{ donc } h_0 h^2(x)^2 h^3(x)^2 h_1 h^2(x); \text{ par passage à l'inverse } (h(x) > 0): \\ & \frac{1}{h_1} \cdot \frac{1}{h^2(x)} \leq \frac{1}{h^3(x)} \leq \frac{1}{h_0} \cdot \frac{1}{h^2(x)}. \text{ Par intégration sur le segment } [0,L]: \end{aligned}$

$$\frac{1}{h_1} \int_0^L \frac{dx}{h^2(x)} \le \int_0^L \frac{dx}{h^3(x)} \le \frac{1}{h_0} \int_0^L \frac{dx}{h^2(x)} . \text{ Donc } \frac{h^*}{h_1} \le 1 \le \frac{h^*}{h_0} .$$

On obtient l'encadrement $h_0^2h^{*2}h_1$ qui était prévisible puisque $h^*=h(x_0)$. Le raisonnement qui précède est par contre très utile pour étudier un cas d'égalité.

Supposons par exemple h*=h₁. On obtient la relation $\frac{1}{h_1} \int_{0}^{L} \frac{dx}{h^2(x)} = \int_{0}^{L} \frac{dx}{h^3(x)}$.

C'est-à-dire $\int_{0}^{L} \left(\frac{1}{h_1} \cdot \frac{1}{h^2(x)} - \frac{1}{h^3(x)} \right) dx = 0$. Or la fonction que l'on intègre est à valeurs

dans R⁻, elle est continue, comme l'intégrale est nulle, la fonction est nulle. Donc sur le segment [0,L], $h(x)=h_1$. h étant L-périodique, h est constante sur R.

<u>3a)</u>

$$u(x,y) = \frac{y^2}{2} p'(x) + y \left(\frac{V}{h(x)} + \frac{h(x)}{2} p'(x) \right) + V$$
. De plus, $h^3(x)p'(x) = 6V(h(x) - h^*)$.

On déduit
$$u(x,y) = V \left[\left(\frac{3y^2}{h^2(x)} + \frac{3y}{h(x)} \right) - \left(\frac{3y^2h^*}{h^3(x)} + \frac{3yh^*}{h^2(x)} \right) + \left(1 + \frac{y}{h(x)} \right) \right].$$

Donc
$$u(x, y) = V \left[\frac{3y}{h(x)} \left(1 + \frac{y}{h(x)} \right) \left(1 - \frac{h^*}{h(x)} \right) + \left(1 + \frac{y}{h(x)} \right) \right].$$

<u>3b</u>

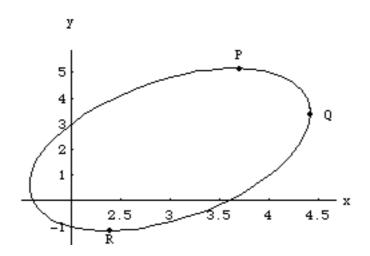
$$\frac{\partial v}{\partial y} = -\frac{\partial u}{\partial x}$$
, alors $\frac{\partial v}{\partial y} = Vh'(x) \left[\frac{6y^2}{h^3(x)} - \frac{9y^2h^*}{h^4(x)} + \frac{4y}{h^2(x)} - \frac{6yh^*}{h^3(x)} \right]$. Par intégration, et

compte tenu de v(x,0)=0, on obtient
$$v(x,y) = Vh'(x) \left(\frac{y}{h(x)} + 1 \right) \left(2 - \frac{3h^*}{h(x)} \right) \cdot \frac{y^2}{h^2(x)}$$
.

<u>3c</u>

u et v sont en fait de classe C- sur R2.

<u>1)</u>



Lorsqu'un point parcourt l'arc de courbe (PQR), entre P et Q : $u(x,y)^30$, entre Q et R: $u(x,y)^20$. Il convient en effet de noter que u(x,y) est l'abscisse du vecteur vitesse en un point régulier de l'arc.

<u>2)</u>

La fonction
$$\lambda: y \to u(x,y) = V \left[\frac{3y}{h(x)} \left(1 + \frac{y}{h(x)} \right) \left(1 - \frac{h^*}{h(x)} \right) + \left(1 + \frac{y}{h(x)} \right) \right]$$
 change de signe sur l'intervalle [-h[x],0]; c'est une fonction polynômiale de degré 2, elle admet pour racines y_1 =-h(x) et $y_2 = -\frac{h(x)}{3} \cdot \frac{1}{1 - \frac{h^*}{h(x)}}$.

 $\lambda(0)=V>0$ et $\lambda(-h(x))=0$, pour que la fonction λ change de signe sur [-h(x),0], il est nécessaire que y₁<y₂<0.

$$y_2 < 0 \Leftrightarrow h(x) > h^*$$
.
 $y_1 < y_2 \Leftrightarrow \frac{1}{1 - \frac{h^*}{h(x)}} < 3 \text{ donc } 1 - \frac{h^*}{h(x)} > \frac{1}{3}$.

Finalement, $h^* < \frac{2}{3} h(x) \le \frac{2}{3} h_1$. En particulier $\frac{h^*}{h} < \frac{2}{3}$.

PARTIE E: CAS PARTICULIER

<u>1)</u>

L'équation $\cos \frac{2\pi x}{l} = -\frac{a}{b}$ ne doit pas avoir de racine réelle; cette hypothèse est vérifiée si et seulement si $-\frac{a}{b} \in]-\infty,-1[$, c'est-à-dire a>b. (noter que a>0, b>0)

On sait que
$$h^* = \frac{\int_0^L \frac{dx}{h^2(x)}}{\int_0^L \frac{dx}{h^3(x)}}$$
. Le calcul des intégrales est élémentaire.

$$\frac{1}{h^{2}(x)} = a^{2} + 2ab\cos\frac{2\pi x}{L} + b^{2}\cos^{2}\frac{2\pi x}{L} \text{ et } \int_{0}^{L} \frac{dx}{h^{2}(x)} = \frac{L}{2} \left(2a^{2} + b^{2} \right).$$

$$\frac{1}{h^{3}(x)} = a^{3} + 3a^{2}b\cos\frac{2\pi x}{L} + +3ab^{2}\cos^{2}\frac{2\pi x}{L} + b^{3}\cos^{3}\frac{2\pi x}{L} \text{ et } \int_{0}^{L} \frac{dx}{h^{3}(x)} = \frac{aL}{2} \left(2a^{2} + 3b^{2} \right).$$

Donc
$$h^* = \frac{(2a^2 + b^2)}{a(2a^2 + 3b^2)}$$
.

<u>3a</u>

$$\begin{cases} a+b = \frac{1}{h_0} \\ a-b = \frac{1}{h_1} \end{cases} \text{ d'où } \begin{cases} a = \frac{h_0 + h_1}{2h_0 h_1} \\ b = \frac{h_1 - h_0}{2h_0 h_1} \end{cases}$$

$$2a^{2} + b^{2} = \frac{3h_{0}^{2} + 2h_{0}h_{1} + 3h_{1}^{2}}{4h_{0}^{2}h_{1}^{2}} = \frac{3 + 2\frac{h_{1}}{h_{0}} + 3\left(\frac{h_{1}}{h_{0}}\right)^{2}}{4h_{1}^{2}} = \frac{3 + 2\alpha + 3\alpha^{2}}{4h_{1}^{2}}.$$

De même,
$$2a^2 + 3b^2 = \frac{5 - 2\alpha + 5\alpha^2}{4h_1^2}$$
.

Ainsi,
$$h^* = \frac{3 + 2\alpha + 3\alpha^2}{5 - 2\alpha + 5\alpha^2} \cdot \frac{2h_0h_1}{h_0 + h_1}$$
.

Par conséquent,
$$\frac{h^*}{h_1} = \frac{3 + 2\alpha + 3\alpha^2}{5 - 2\alpha + 5\alpha^2} \cdot \frac{2}{1 + \alpha} = r(\alpha)$$
.

On sait que $\alpha = \frac{h_1}{h_0} > 1$. L'idée d'étudier la limite du rapport précédent lorsque $\alpha \to 0$ est étrange. Par contre, la limite de ce rapport lorsque $\alpha \to 1$ est égale à 1. La limite en +_ est nulle.

<u>3b</u>

Pour qu'il existe des trajectoires fermées, il est nécessaire que l'on choisisse α tel que $\frac{h^*}{h_1} < \frac{2}{3}$. Or $r(2) = \frac{2}{3} \cdot \frac{19}{21} < \frac{2}{3}$; De tels choix sont possibles : il peut donc exister des trajectoires fermées. Enfin, celà n'est pas demandé, mais il est clair que pour $\alpha > 2$: $\frac{2}{1+\alpha} < \frac{2}{3}$ et $\frac{3+2\alpha+3\alpha^2}{5-2\alpha+5\alpha^2} < 1$ (inégalité équivalente à $(\alpha-1)^2 > 0$), donc $r(\alpha) < \frac{2}{3}$.

Il serait intéressant de savoir si l'on peut choisir une de ces valeurs pour obtenir une trajectoire fermée. L'étude est faite avec Mathématica.: la réponse est positive.