Mines Pont MP Physique I 2005

I Fluide en rotation

On considère une particule de fluide situé en M(r,z) de masse dm= $\mu(M)$ d τ .

Compte tenu de la symétrie , a priori on peut admettre que μ et p ne dépende que de r et z en coordonnées cylindriques (invariance suivant θ)

On peut choisir deux référentiels pour retrouver le résultat :

Référentiel terrestre :

-
$$\mu d \tau \omega^2 r \vec{e}_r = - \overset{\rightarrow}{grad} p(M) d \tau + \mu d \tau \vec{g}$$

- Référentiel lié au réservoir en rotation uniforme autour de l'axe Oz

Dans ce référentiel, la particule est immobile; il existe la force d'inertie d'entraînement.

$$d\vec{f}_{e} = \mu d\tau \omega^{2} r \vec{e}_{r} \qquad \qquad \overrightarrow{0} = \mu d\tau \omega^{2} r \vec{e}_{r} - grad p(M) d\tau + \mu d\tau \vec{g}$$

$$\partial p \qquad \qquad \partial p$$

En projection :
$$\frac{\partial p}{\partial r} = \omega^2 r \mu (r,z)$$
 ; $\frac{\partial p}{\partial z} = -\mu g$

On admet comme le suggère l'énoncé que μ et p ne dépende que de r : $\frac{dp}{dr} = \omega^2 r \mu (r,z)$

Pour justifier le fait que l'on peut négliger la variation selon z , comparons les variations de p en admettant que $\mu\approx\mu_0$

$$\Delta p(r) = R^2 \omega^2 \mu_0 / 2$$
 suivant le rayon et $\Delta p(z) = \mu_0 g$ H suivant l'altitude soit $R^2 \omega^2 / 2 >> gH$

Pour un cylindre tel que H = R =
$$10 \text{ cm}$$
 $\omega >> 14 \text{ rad/s soit } 2.2 \text{ tours/s}$

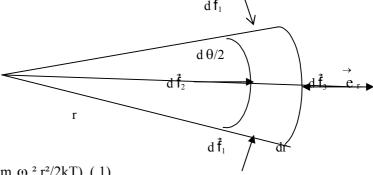
Remarque

On peut retrouver avec beaucoup de précaution la relation demandée sans connaître la formule de l'hydrostatique On considère une hauteur dz

En projection sur $\stackrel{\rightarrow}{e}_r$

$$r d \theta p(r) dz - (r+dr) dz p(r+dr) + p(r)drdz d \theta$$

= - (dp/dr) r dr dz d \theta = - (dp/dr) d \tau



2.
$$\frac{1}{p}\frac{dp}{dr} = \omega^2 r m/kT$$
 ; $p@=p(0) xp(m \omega^2 r^2/2kT)$ (1)

 \Box 3. La masse au repos est M = $\mu_0 \pi R^2 H$

$$M = \int_{0}^{R} H\mu(r) 2 \pi r dr = (2 \pi m p(0)/kT) H \int_{0}^{R} r \exp(m \omega^{2} r^{2}/2kT) dr = \mu_{0} \pi R^{2} H$$

Soit par identification ~p(o) [exp (m ω $^2R^2/2kT)$ - 1] = μ_0R^2 ω $^2/2$ ~avec~ $~\mu_0$ = m p_0/kT

En reportant p(o) dans l'expression (1), on trouve la relation demandée [2]

La conservation de la masse ne permet pas ici de déterminer p(0)

On peut considérer que ces deux expressions sont équivalentes

□ 6.

$$dp = \omega^2 \mu_0 \left[1 + \epsilon \right] r dr \qquad d \epsilon / (1 + \epsilon] = \chi_0 \omega^2 \mu_0 r dr \qquad : \qquad ln \left(1 + \epsilon \right) = \left(\omega^2 \mu_0 \chi_0 \right) r^2 / 2 + cte$$
 soit au premier ordre
$$\epsilon = \left(\omega^2 \mu_0 \chi_0 \right) r^2 / 2 + cte \qquad = \chi_0 \left(p - p_0 \right)$$

If vient: $\mu = \mu_0 [1 + \chi_0 [(\omega^2 \mu_0) r^2/2 + K]$

1 7.

$$M = \mu_0 \; \pi \; R^2 H = \int\limits_0^R \; H \mu(r \;) \; 2 \; \pi r \; dr \label{eq:mass}$$

L'intégrale est triviale, on obtient $K = -1/4 \omega^2 R^2 \mu_0$ Il vient:

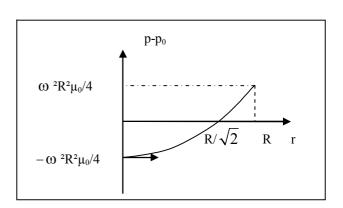
$$\begin{split} \mu &= \mu_0 \left[\ 1 + (\chi_0 \ \omega^2 \ \mu_0/2) \ \right.) (\ r^2 - \ R^2/2) \right] \\ p &= p_0 + \frac{1}{2} \ \omega^2 \mu_0 (\ r^2 - R^2/2) \end{split}$$

Pour r = 0 $p(0) = p_0 - 1/4$ $\omega^2 \mu_0 R^2$

$$p(R) = p_0 + 1/4 \omega^2 \mu_0 R^2$$

Ce résultat est indépendant de χ_0 : il reste vrai même si χ_0 = 0 ; cela nous permet de déterminer p(o) dans le cas du fluide incompressible (question 4)

Allure du graphe évident



Il faut cependant garder à l'esprit que le domaine de validité de 'expression reste soumis à l'inégalité $|\chi \delta p| \ll 1$

□ 8.

$$^{1}/_{2}$$
 χ_{0} ω $^{2}\mu_{0}$ (r^{2} - $R^{2}/2$) = χ_{0} (p- p₀) = ϵ <<1 il suffit pour cela que ω $^{2}\mu_{0}$ χ_{0} R^{2} /4 << 1

9.

AN
$$\omega^2 \mu_0 \chi_0 R^2 / 4 \approx 1,2.10^{-3} << 1$$
 L'hypothèse est valide
La vitesse maximale des molécules est $v_{ma} = R \omega = 100 \text{ m.s}^{-1} << 1450 \text{ m.s}^{-1}$ $v_{max} / c_{eau} = 7.10^{-2}$

10.

Erreur d'énoncé $\chi_T \mu c^2 = 1$

Pour un gaz parfait
$$p / \mu = RT/M$$
 $\chi_T (p,T) = \frac{1}{\mu} \left(\frac{\partial \mu}{\partial p} \right)_T = 1/p$ $\chi_0 = 1/p_0$

 $c^2_{GP} = p_0/\mu_0 = kT/m$

Or l'expression obtenue la question 2 donne p(r) = p(0) exp m $\omega^2 r^2/2kT$

soit $p(r)=p(0) \exp(v^2/2c^2)$ où $v=r.\omega$

Nous savons que
$$v_{max} \ll c_{gp}$$
 donc $p(r) = p(0) (1 + v^2/2c^2) = p(0) [1 + r^2 \omega^2/2c^2)$

Cette relation est de la même forme que celle trouvée à la guestion 4

Le gaz se comporte comme s'il était incompressible. Les contraintes imposées ne changent pratiquement pas sa masse volumique.

II Rotation d'une barre rigide

11.

Pour retrouver la relation demandée on peut négliger le poids de la barre et dans ce cas la tension $\overrightarrow{T}(r)$ de la barre est dirigée selon e_r.

Dans le référentiel du laboratoire on peut alors écrire $[T(r+dr) - T(r)] \stackrel{\rightarrow}{e}_r = -\lambda (r) \omega^2 r dr \stackrel{\rightarrow}{e}_r$ soit $dT/dr = -\lambda \omega^2 rdr$

En toute rigueur, il faudrait écrire:

$$\overrightarrow{T}(r+dr) - \overrightarrow{T}(r) + \lambda dr \overrightarrow{g} = -\lambda (r) \omega^2 r dr \overrightarrow{e}_r$$

En projection sur l'axe $\stackrel{\rightarrow}{e}_r$ on obtient $(\stackrel{\rightarrow}{T}(r+dr)-\stackrel{\rightarrow}{T}(r))$. $\stackrel{\rightarrow}{e}_r=T(r+dr)-T(r)=-\lambda(r)$ omega=rdr

12.

G Thomassier p05pm1e

D'ailleurs on peut retrouver T(0) en considérant la barre en entier et en lui appliquant le théorème du centre

d'inertie
$$T(0) \stackrel{\rightarrow}{e}_r + T(_{Oz}) \stackrel{\rightarrow}{e}_r = \stackrel{\rightarrow}{0}$$
 $T(Oz \rightarrow barre) \stackrel{\rightarrow}{e}_r + \lambda_0 \omega^2 L_0^2 / 2 \stackrel{\rightarrow}{e}_r = 0$ 13.

$$T(r) = -1/2 \lambda_0 \otimes r^2$$
 car pour $r = 0$ $T(0) = 0$

Raisonnement à partir du théorème du centre d'inertie :

14.

On a une liaison avec deux conditions en A et en O avec L_0 imposée; on ne peut pas avec ces données déterminer la constante

$$\begin{split} T(r) = &- \frac{1}{2} \ \lambda_0 \ \omega^2 \ r^2 + cte & T(L_0) - T(0) = - \ \lambda_0 \ \omega^2 L^2_0 / 2 \\ T(Oz \rightarrow barre) \stackrel{\rightarrow}{e}_r + \ F_A \ (\ en\ a\ par\ le\ support\) \stackrel{\rightarrow}{e}_r + \lambda_0 \ \omega^2 \ L^2_0 / 2 \stackrel{\rightarrow}{e}_r = \stackrel{\rightarrow}{0} \end{split}$$

15.

$$dT/dr = -\lambda_0 [1 - T(r)/sE] \omega^2 r$$
On sépare les variables :
$$dT[1 - T(r)/sE]^{-1} = -\lambda_0 \omega^2 r dr$$

$$ln (1 - T(r)) = \frac{1}{2} (\lambda_0 \omega^2 r^2/sE) + cte \quad \text{à l'ordre le plus bas} \quad T(r) = -1/2 \lambda_0 \omega^2 r^2 + K'$$

16.

$$M = \int_{0}^{L} \lambda dr = \int_{0}^{L} \lambda_{0} (1 - T(r) / sE) dr$$

$$\lambda_{0}L_{0} = \lambda_{0}L_{0} + (\lambda_{0}L_{0} / sE)(\lambda_{0}L_{0}^{2} \omega^{2} / 6-K^{2})$$
Soit $T(r) = \frac{1}{2} \lambda_{0} \omega^{2} [1/3 L_{0}^{2} - r^{2}]$

Résultat indépendant du module de rigidité . Il permet donc à la limite de déterminer les deux valeurs de T dans la question 14

$$T(0) = 1/6 (\lambda_0 \omega^2 L_0) T(L_0) = -1/3 \lambda_0 \omega^2 L_0$$

La tension est nulle au point $r = L_0 / \sqrt{3}$

III Rotation à vitesse angulaire variable

17.

Dans le référentiel terrestre appliquons le théormèe du moment cinétique en O ,point fixe .

$$\frac{d\sigma_0}{dt} \stackrel{\rightarrow}{\mathbf{e}_z} = \stackrel{\rightarrow}{M}_{0}. \stackrel{\rightarrow}{\mathbf{e}_z}$$

Or la liaison en O est une liaison pivot parfaite : (R_u, R_V, R_Z) ; $M_{0z} = 0$

Le moment du poids est : Moz= Mg $\sin \theta$ D/2 $\sigma_{oz} = J_0 \theta$

donc
$$J_0 \stackrel{\bullet}{\theta} = = Mg \sin \theta D/2$$
 $\stackrel{\bullet}{\theta} = 3/2 g/D \sin \theta$

18.

L'énergie cinétique de la barre est : $E_C = \frac{1}{2} J_0 \left(\frac{\bullet}{\theta}\right)^2$

L'énergie potentille de la barre est $E_p = Mg x_G + cte = M \cos \theta D/2 + cte$ La liaison est parfaite : sa puissance est nulle : l'énergie mécanique se conserve G Thomassier p05pm1e

$$\mathbf{E}_{\mathbf{M}} = \frac{1}{2} \mathbf{J}_{\mathbf{0}} \left(\stackrel{\bullet}{\mathbf{\theta}} \right)^{2} + \mathbf{M}\mathbf{g} \cos \theta \, \mathbf{D}/2 = \mathbf{M}\mathbf{g} \, \mathbf{D}/2 \quad \text{car pour } \theta = 0 \stackrel{\bullet}{\mathbf{\theta}} = 0$$

Par dérivation on retrouve la relation précédente

19.

$$\vec{a}_{G} = -1/2 D \left(\stackrel{\bullet}{\theta} \right)^{2} \vec{u} + \frac{1}{2} D \stackrel{\bullet}{\theta} \vec{v}$$

Appliquons le théorème du centre d'inertie dans le référentiel terrestre

$$-1/2 \text{ DM} \left(\stackrel{\bullet}{\theta} \right)^2 = R_u - Mg \cos \theta \qquad {}^{1/2}M \text{ D} \stackrel{\bullet \bullet}{\theta} = R_v + Mg \sin \theta$$

On remplace $\theta = 3/2$ g/D $\sin \theta$ $\theta^2 = (3g/2D)[1 - \cos \theta]$

$$R_u = 5/2 \text{ Mg cos } \theta - 3/2 \text{ Mg}$$
 $R_v = -\frac{1}{4} \text{ Mg sin } \theta$

20.

La cheminée quitte le sol ??

La liaison est une liaison pivot . Si on admet qu'elle est unilatérale on peut admettre que c'est pour $R_U = 0$ soit $\cos \theta = 3/5$ $\theta = 53^{\circ}$

On peut aussi écrire que $R_X = 0$

$$R_X = R_u \cos \theta - R_V \sin \theta$$
 $9 \cos^2 \theta - 6 \cos \theta + 1 = 0$; $\cos \theta = 1/3$; $\theta = 70^\circ$

1 21.

On applique le théorème du centre d'inertie à la partie d de la barre

(Md/D) d/2
$$\theta = R_V + S_v + (Md/D)g \sin \theta$$

On remplace θ et R_V : S_V = Mg sin θ [$\frac{3}{4}$ d²/D² - d/D +1/4]

22.

On pose
$$Y = 3x^2-4x+1$$
 $Y = 4S_V/Mg \sin \theta$ $x = d/D$

$$Y(0) = 1$$
 $Y(1) = 0$ $dy/dx = 0$ pour $x = 2/3$ $Y(2/3) = -1/3$

Donc passe par un minimum pour x = 2/3

L'effort de cisaillement est le plus important pour x = 0 c'est-à-dire à la base

□ 23.

Il faut appliquer le théorème du moment cinétique en O à la logeur d de la cheminée

$$\lambda d d^2/3 \theta \stackrel{\bullet}{e_x} = \lambda dg \sin \theta / 2 \stackrel{\rightarrow}{e_x} + C \stackrel{\rightarrow}{e_x} + d/2 \vec{u} \wedge S_V \vec{v}$$

$$M = \lambda D$$
 on remplace $S_{v=}$ et θ : on obtient la relation $C = -1/4$ Mgd $\sin \theta$ ($d/D - 1)^2$

 \square 24.

Maximum du couple pour
$$dC/dd = 0$$
 $d = D/3$
 $d=0$ $C=0$; $d=D$ $C=0$ $d=D/3$ $|C| = MgD sin $\theta/27$$

La photographie de gauche correspond au cas du couple maximum alors que la photographie de droite à celle de l'effritement. Le modèle de la liaison par pivot (pas très réaliste), l'inhomogénéité de la cheminée peut expliquer les écarts avec la **théorie**