EM Lyon- 2006 : Corrigé Maths I

Mr Mamouni : myismail1@menara.ma MPSI-CPGE Med V, Casablanca, Maroc.

Source disponible sur:

@http://www.chez.com/myismail

CORRIGÉ PROBLÉME II.

- 1) a) D'aprés la forme de la matrice, on peut conclure que $f(e_i) = e_{i+1}$, pour tout $i \in [1; n]$.
 - b) Par récurrence très simple sur $j \in [1; n]$, on peut montrer que $f^j(e_1) = e_{j+1}$.

D'aprés la forme de la matrice, on peut conclure que $f^n(e_1) = -(a_0e_1 + a_1e_2 + \cdots + a_{n-1}e_n)$.

- 2) a) $g(e_1) = f^n(e_1) + a_{n-1}f^{n-1}(e_1) + \cdots + a_1f(e_1) + a_0e_1$ = $f^n(e_1) + a_{n-1}e_n + \cdots + a_1e_2 + a_0e_1$ (d'aprés 1.a) = 0 (d'aprés 1.b)
 - b) $\forall i \in \mathbb{N}$, on a: $g \circ f^i = f^{n+i} + a_{n-1} f^{n-1+i} + \dots + a_1 f^{1+i} + a_0 f^i = f^i \circ g$.
 - c) $\forall i \in [\![1;n]\!]$, on a : $g(e_i) = g \circ f^{i-1}(e_1)$ d'aprés 1.b $= f^{i-1} \circ g(e_1)$ d'aprés 2.b = 0 d'aprés 2.c
 - d) P(f) = g est nul sur la base de \mathcal{B}_0 , donc partout nul, d'où P(f) = 0, donc P est un polynôme annulateur de f. Application 1: Il faut choisir par exemple $A = \mathcal{M}_f(\mathcal{B}_0)$ de sorte que $f^5 - f^3 - 2f^2 - \text{id} = 0$, donc telle que $P(X) = X^5 - X^3 - 2X^2 - 1$ soit polynôme annulateurt de f, d'aprés ce qui précède il suffit de

$$\text{prendre } A = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

e) Soit λ valeur propre de f, et $x \neq 0$ vecteur propre associé, donc $f(x) = \lambda x$, par récurrence simple sur $k \in \mathbb{N}$, on montre que

$$f^k(x) = \lambda^k x$$
. Or $P(f) = 0$, donc $0 = P(f)(x) = \sum_{k=0}^n a_k f^k(x) = \left(\sum_{k=0}^n a_k \lambda^k\right) x = P(\lambda)x$, ainsi $P(\lambda)x = 0$ et comme $x \neq 0$, alors $P(\lambda) = 0$.

- 3) a) $Q(f)(e_1) = \alpha_0 e_1 + \alpha_1 f(e_1) + \dots + \alpha_{n-1} f^{n-1}(e_1)$ = $\alpha_0 e_1 + \alpha_1 e_2 + \dots + \alpha_{n-1} e_n$ d'aprés 1.b
 - b) Supposons qu'il existe $Q \in \mathbb{C}_{n-1}[X] \setminus \{0\}$ tel que Q(f) = 0, en particulier $Q(f)(e_1) = 0$, donc $\alpha_0 e_1 + \alpha_1 e_2 + \cdots + \alpha_{n-1} e_n = 0$, or $\mathcal{B}_0 = (e_1, \dots, e_n)$ base de E, donc $\alpha_0 = \dots = \alpha_n = 0$, d'où Q = 0, contradiction.
 - c) $0 = P(f) = (f \lambda \text{ id}) \circ R(f) = 0, \text{ car } P = (X \lambda)R.$
 - d) $\deg P = n \implies \deg R = n 1 \implies R(f) \neq 0$, d'aprés 3.b, donc $\exists x_0 \in E$ tel que $R(f)(x_0) \neq 0$, posons $x = R(f)(x_0)$, donc $0 = (f \lambda \operatorname{id}) \circ R(f)(x_0) = (f \lambda \operatorname{id})(x) = f(x) \lambda x$, d'où $f(x) = \lambda x$ avec $x \neq 0$, autrement dit λ est une valeur propre de f, et x vecteur propre associé.
 - e) Découle immédiatement de la question précédente.

4)

5) a)
$$C - xI_n = \begin{pmatrix} -x & 0 & \dots & 0 & -a_0 \\ 1 & -x & \ddots & \vdots & -a_1 \\ 0 & \ddots & \ddots & 0 & \vdots \\ \vdots & \ddots & & & \\ & & -x & -a_{n-2} \\ 0 & \dots & 0 & 1 & -a_{n-1} - x \end{pmatrix}$$

On vérifie facilement que les n-1 premières colonnes forment une famille libre, donc $\operatorname{rg}(C-xI_n) \geq n-1$.

Soit λ une valeur propre de C, et Ker $(C - \lambda I_n)$ le sous espace vectoriel propre associé, donc Ker $(C - \lambda I_n) \neq \{0\}$, d'où dim Ker $(C - \lambda I_n) \geq 1$, or $\operatorname{rg}(C - \lambda I_n) \geq n - 1$ donc dim Ker $(C - \lambda I_n) = n - \operatorname{rg}(C - \lambda I_n) \leq 1$, d'où l'égalité dim Ker $(C - \lambda I_n) = 1$.

b) D'aprés 2.e et 3.d les racines de P sont exactement les valeurs propres de C, supposons donc que C admet r valeurs propres deux à deux distinctes, $\lambda_1, \dots, \lambda_r$, alors

C est diagonalisable $\iff \mathbb{C}^n = \bigoplus_{i=1}^r \operatorname{Ker} (C - \lambda_i I_n)$ $\iff \dim \mathbb{C}^n = \dim (\bigoplus_{i=1}^r \operatorname{Ker} (C - \lambda_i I_n))$ $\iff n = \sum_{i=1}^r \dim (\operatorname{Ker} (C - \lambda_i I_n)) = r$

- 6) a) Application 2 : A_1 est la matrice compagnon associé à $P(X) = X^4 1$ qui admet exactemnt 4 racines qui sont $e^{i\frac{k\pi}{2}}$ avec $0 \le k \le 3$, donc diagonalisable.
 - b) Application $3: A_2$ est la matrice compagnon associé à $P(X) = X^4 2X^3 3X^2 + 8X 4 = (X-1)^2(X-2)(X+2)$ qui admet seulement 3 racines , donc n'est pas diagonalisable.
- 7) a) Evident, puique $C tI_n = {}^{t}(B tI_n)$.
 - b) λ valeur propre de $B \iff B tI_n$ non inversible, $\iff C tI_n$ non inversible $\iff \lambda$ valeur propre de C.
 - c) λ valeur propre de B et $X=(x_i)_{1\leq i\leq n}$ vecteur propre associé, donc $BX=\lambda X$, d'où le système : $x_2=\lambda x_1$

$$\begin{cases} x_2 &= \lambda x_1 \\ \vdots \\ x_i &= \lambda x_{i-1} \\ \vdots \\ x_n &= \lambda x_{n-1} \\ -a_0 x_1 - a_1 x_2 - \dots - a_{n-1} x_{n-1} &= \lambda x_1 \end{cases}$$

Ainsi $(x_i)_{1 \leq i \leq n}$ est une suite géometrique de raison λ , d'où $x_i = \alpha \lambda^{i-1}$, où $\alpha = x_1$, donc $X_{\lambda} = (\lambda^{i-1})_{1 \leq i \leq n}$ base du sous-espace propre Ker $(B - \lambda I_n)$.

- d) Si P admet n racines, alors C admet n valeurs propres distinctes, car les racines de P sont les valeurs propres de C, donc B admet aussi n valeurs propres, d'aprés 6.b, donc B est diagonalisable, donc $E = \bigoplus_{i=1}^{n} \text{Ker } (B \lambda_i I_n)$, donc $\mathcal{B}_1 = (X_{\lambda_1}, \dots, X_{\lambda_n})$ est une base de E, car chaque X_{λ_i} forme une base de E Ker E0 car chaque E1 est inversible.
- 8) a) Comme $\operatorname{card} \mathcal{B}_a = n = \dim \mathbb{C}^n$, pour montrer que c'est une base, il suffit de montrer qu'elle est libre.

Soit $\lambda_0, \dots, \lambda_{n-1}$ tel que $\sum_{i=0}^n \lambda_i u^i(a) = 0$. On a $u(\varepsilon_j) = \mu_j \varepsilon_j$, donc $u^i(\varepsilon_j) = \mu_j^i \varepsilon_j$, donc $u^j(a) = \sum_{i=1}^n \mu_j^i \varepsilon_j$, d'où

 $\sum_{i=0}^{n-1} \lambda_i \left(\sum_{j=1}^n \mu_j^i \varepsilon_j \right) = \sum_{j=1}^n \left(\sum_{i=0}^{n-1} \mu_j^i \lambda_i \right) \varepsilon_j = 0, \text{ or } \mathcal{B} = (\varepsilon_n, \dots, \varepsilon_n)$

est une base de E, donc $\sum_{i=0}^{i} \mu_j^i \lambda_i$, d'où l'équation VX=0, où $V=(\mu_j^{i-1})_{1\leq i,j\leq n}$ et $X=(\lambda_i)_{1\leq i\leq n}$, or V est inversible, donc X=0. CQFD.

b) Prendre $b_k = -\beta_k$ tel que $u^n(a) = \sum_{k=0}^{n-1} \beta_k u^k(a)$, ce qui possible car \mathcal{B}_a base de E et $u^n(a) \in E$.

Fin.