Épreuve ESSEC 2011 option économique Math II - Un corrigé

Dans ce problème nous supposerons que le jeu de cartes est constitué d'au moins 2 cartes, soit $N \geq 2$.

1) Pour $i \in [2, n-1]$, $\sum_{k=1}^{i} \Delta_k = T_1 + \sum_{k=2}^{i} (T_k - T_{k-1}) = T_i$ (somme télescopique).

 Δ_i représente le temps qu'il faut pour que la carte C_N passe de la position N-i, c'est-à-dire le temps qu'il faudra, à partir de l'instant T_{i-1} , pour obtenir une insertion entre les places N et N-i+1 (compris).

2) $(\Delta_1 > n)$ est l'événement : pendant les n premiers instants les numéros d'insertions sont toujours entre 1 et N-1.

Par hypothèse, un numéro d'insertion entre 1 et N-1 est choisi avec probabilité $\frac{N-1}{N}$ (loi uniforme) et les choix des numéros d'insertions sont supposés indépendants donc

$$\mathbf{P}(\Delta_1 > n) = \left(\frac{N-1}{N}\right)^n$$

donc
$$\mathbf{P}(\Delta_1 = n) = \mathbf{P}(\Delta_1 > n - 1) - \mathbf{P}(\Delta_1 > n) = \frac{1}{N} \left(1 - \frac{1}{N} \right)^{n-1}$$

Ainsi Δ_1 suit une loi géométrique de paramètre 1/N.

3) (a) $(\Delta_i > n)$ correspond à l'événement : "pendant n instants successifs (à partir de T_{i-1}) les numéros d'insertions sont compris entre 1 et N-i compris".

Par hypothèse, un numéro d'insertion entre 1 et N-i est choisi avec probabilité $\frac{N-i}{N}$ (loi uniforme) et les choix des numéros d'insertions sont supposés indépendants donc

$$\mathbf{P}(\Delta_i > n) = \left(\frac{N-i}{N}\right)^n$$

donc
$$\mathbf{P}(\Delta_i = n) = \mathbf{P}(\Delta_i > n - 1) - \mathbf{P}(\Delta_i > n) = \frac{i}{N} \left(1 - \frac{i}{N}\right)^{n-1}$$

On en conclut que Δ_i suit une loi géométrique de paramètre i/N.

(b) Par un résultat de cours sur les lois géométriques

$$E(\Delta_i) = \frac{1}{i/N} = \frac{N}{i} \text{ et } V(\Delta_i) = \frac{1 - i/N}{(i/N)^2} = \frac{N(N - i)}{i^2}$$

4) (a) $T_2 = \Delta_1 + \Delta_2$ done

$$(T_2 = n) = \bigcup_{k=1}^{n-1} (\Delta_1 = k) \cap (\Delta_2 = n - k)$$

$$\mathbf{P}(T_2 = n) = \sum_{k=1}^{n-1} \mathbf{P}\left[(\Delta_1 = k) \cap (\Delta_2 = n - k)\right] \quad \text{union d'événements incompatibles}$$
$$= \sum_{k=1}^{n-1} \mathbf{P}(\Delta_1 = k) \mathbf{P}(\Delta_2 = n - k) \qquad \Delta_1 \text{ et } \Delta_2 \text{ sont indépendantes}$$

(b) Calcul d'une somme géométrique de raison $\rho = \frac{1-1/N}{1-2/N} \neq 1$.

$$\begin{split} \sum_{k=1}^{n-1} \left(\frac{1-1/N}{1-2/N} \right)^k &= \frac{1-1/N}{1-2/N} \sum_{k=0}^{n-2} \left(\frac{1-1/N}{1-2/N} \right)^k \\ &= \frac{1-1/N}{1-2/N} \frac{1 - \left(\frac{1-1/N}{1-2/N} \right)^{n-1}}{1 - \frac{1-1/N}{1-2/N}} \\ &= \frac{1-1/N}{1-2/N} \frac{1-2/N}{(1-2/N)^{n-1}} \frac{(1-2/N)^{n-1} - (1-1/N)^{n-1}}{-1/N} \\ &= N \left(1 - \frac{1}{N} \right) \left[\left(\frac{1-1/N}{1-2/N} \right)^{n-1} - 1 \right] \end{split}$$

(c) En utilisant les lois de Δ_1 et Δ_2 , on obtient

$$\mathbf{P}(T_2 = n) = \frac{1}{N} \frac{2}{N} \sum_{k=1}^{n-1} \left(1 - \frac{1}{N} \right)^{k-1} \left(1 - \frac{2}{N} \right)^{n-k-1}$$

$$= \frac{2}{N^2} \frac{\left(1 - \frac{2}{N} \right)^{n-1}}{1 - \frac{1}{N}} \sum_{k=1}^{n-1} \left(\frac{1 - 1/N}{1 - 2/N} \right)^k$$

$$= \frac{2}{N^2} \frac{\left(1 - \frac{2}{N} \right)^{n-1}}{1 - \frac{1}{N}} N \left(1 - \frac{1}{N} \right) \left[\left(\frac{1 - 1/N}{1 - 2/N} \right)^{n-1} - 1 \right]$$

$$= \frac{2}{N} \left[\left(1 - \frac{1}{N} \right)^{n-1} - \left(1 - \frac{2}{N} \right)^{n-1} \right]$$

- 5) Les deux probabilités demandées sont égales (il y a autant de chances que la carte placée à l'instant T_2 le soit en position N-1 ou N, l'autre est alors à l'autre place possible). Ainsi, les deux probabilités valent 1/2.
- 6) Il y a 3! = 6 possibilités pour le triplet (a_1, a_2, a_3) .

Il y a autant de chances que la carte placée à l'instant T_3 le soit en position N-2, N-1 ou N. Et vu ce qui précède sur les cartes placées aux instants T_1 et T_2 , on en déduit que les 3! = 6 configurations possibles sont équiprobables.

Dans les deux exemples cités, les probabilités sont alors égales à 1/3! = 1/6.

7) Comme dans les exemples précédents, à l'instant $T-1=T_{N-1}$ la carte C_N se trouve au dessus du paquet et toutes les configurations des N-1 cartes situées au dessous sont équiprobables (ce qui s'établit prouve par récurrence).

À l'instant $T = T_{N-1} + 1$, on glisse la carte C_N en position k en tirant le nombre k au hasard selon une loi uniforme sur [1, N]. On obtient alors un jeu de cartes dans l'une des N! configurations possibles, avec autant de chances pour chacune des configurations.

8) $T = \Delta_1 + \Delta_2 + \cdots + \Delta_{N-1} + 1$. Par linéarité de l'espérance :

$$E(T) = E(\Delta_1) + E(\Delta_2) + \dots + E(\Delta_{N-1}) + 1$$

$$= \sum_{i=1}^{N-1} \frac{N}{i} + 1 = \sum_{i=1}^{N} \frac{N}{i}$$

$$= NH_N$$

En utilisant l'indépendance des variables $(\Delta_1, \dots, \Delta_{N-1}, 1)$, on obtient

$$V(T) = V(\Delta_1) + V(\Delta_2) + \dots + V(\Delta_{N-1}) + V(1)$$

$$= \sum_{i=1}^{N-1} \frac{N(N-i)}{i^2} + 0$$

$$= N^2 \sum_{i=1}^{N-1} \frac{1}{i^2} - N \sum_{i=1}^{N-1} \frac{1}{i}$$

$$= N^2 \sum_{i=1}^{N} \frac{1}{i^2} - N \sum_{i=1}^{N} \frac{1}{i}$$

$$\operatorname{car} 1 = N^2 \frac{1}{N^2} = N \frac{1}{N}$$

- 9) (a) Soit $k \in \mathbb{N}^*$. La fonction $f: t \mapsto 1/t$ est décroissante sur l'intervalle [k, k+1]. Donc $\forall t \in [k, k+1], \frac{1}{k+1} \le \frac{1}{t} \le \frac{1}{k}$. En intégrant cette inégalité sur l'intervalle [k, k+1], on obtient l'encadrement demandé.
 - (b) (i) $u_{n+1} u_n = H_{n+1} H_n \ln(n+1) + \ln n = \frac{1}{n+1} [\ln(n+1) \ln(n)] = \frac{1}{n+1} \int_n^{n+1} \frac{dt}{t} \le 0$ (en utilisant l'inégalité de gauche de l'encadrement qui précède). La suite u est donc décroissante.

(ii) Pour $n \in \mathbb{N}^*$, sommons les inégalités de droite de l'encadrement de la question 9.a pour k = 1..n. On obtient alors

$$\underbrace{\int_{1}^{n+1} \frac{\mathrm{d}t}{t}}_{=\ln(n+1)} \le \underbrace{\sum_{k=1}^{n} \frac{1}{k}}_{=H_{n}}$$

Si n = 1, $H_1 = 1 \le \ln(1) + 1$. Si $n \ge 2$, on somme les inégalités de gauche pour k = 1 à n - 1 et on obtient : $(H_n - 1) \le \int_1^n \frac{\mathrm{d}t}{t} = \ln(n)$.

- (c) $\forall n \in \mathbb{N}^*$, $0 \le \ln(n+1) \ln(n) \le u_n \le 1$. Décroissante et minorée par 0, la suite (u_n) est donc <u>convergente</u>. L'encadrement permet de dire que sa limite γ appartient au segment [0,1].
- 10) (a) En utilisant les questions 8 et 9.b.ii on sait que : $N \ln(N+1) \le E(T) = N H_N \le N \ln(N) + N$. Donc

$$\frac{\ln(N+1)}{\ln(N)} \le \frac{E(T)}{N\ln(N)} \le 1 + \frac{1}{\ln(N)}$$

Or
$$\ln(N+1) = \ln(N) + \ln\left(1 + \frac{1}{N}\right)$$
, donc $\frac{\ln(N+1)}{\ln(N)} = 1 + \frac{\ln\left(1 + \frac{1}{N}\right)}{\ln(N)} \longrightarrow 1$

Ainsi, par encadrement, la suite $\left(\frac{E(T)}{N\ln(N)}\right)_N$ tend vers 1, c'est-à-dire $E(T)\sim N\ln N$.

De plus $E(T) - N \ln(N) = Nu_N = N(\gamma + o(1)) = N\gamma + o(N)$.

N.B. Remarquons que ce développement asymptotique permet de retrouver directement l'équivalent $E(T) \sim N \ln(N)$ car $N = o(N \ln(N))$.

(b) Pour tout entier $n \ge 1$, posons $S_n = \sum_{k=1}^n 1/k^2$. Cette suite $(S_n)_n$ est convergente (série de Riemann). Notons α sa limite. On sait que $(S_n)_n$ est croissante donc

$$\forall n \ge 1, \quad \alpha \ge S_n \ge S_1 > 0$$

Or $\frac{V(T)}{N^2} = S_N - \frac{H_N}{N}$ et $\frac{H_N}{N} \sim \frac{\ln(N)}{N} \longrightarrow 0$, donc la suite $(V(T)/N^2)_N$ est convergente vers α . On a bien

$$V(T) \sim \alpha N^2$$

De plus,

$$\forall N \in \mathbb{N}^*, \ \frac{V(T)}{N^2} = S_N - \frac{H_N}{N} \le \alpha - \frac{H_N}{N} \le \alpha$$

11) (a) •Pour $\omega \in \Omega$, $T(\omega) - N \ln(N) = T - E(T) + Nu_N$. En utilisant l'inégalité triangulaire, il vient

$$|T(\omega) - N\ln(N)| \le |T(\omega) - E(T)| + |Nu_N| \le |T(\omega) - E(T)| + N$$

car avec 9.b.ii, $0 \le Nu_N \le N$.

•Supposons que pour un $\omega \in \Omega$, on ait $|T(\omega) - N \ln(N)| \ge cN$, alors grâce à l'inégalité précédente, on en déduit : $|T(\omega) - E(T)| + N \ge cN$, donc $|T(\omega) - E(T)| \ge (c-1)N$. On a donc l'inclusion des événements :

$$(|T - N \ln(N)| \ge cN) \subset (|T - E(T)| \ge N(c - 1))$$

(b) On en déduit $\mathbf{P}(|T-N\ln(N)| \ge cN) \le \mathbf{P}(|T-E(T)| \ge N(c-1))$ et en utilisant l'inégalité de Bienaymé-Chebychev à la variable aléatoire T, on a la majoration

$$\mathbf{P}\Big(|T - E(T)| \ge N(c - 1)\Big) \le \frac{V(T)}{(N(c - 1))^2}$$

En utilisant enfin la question 10b, on peut conclure

$$\mathbf{P}\Big(|T - N\ln(N)| \ge cN\Big) \le \mathbf{P}\Big(|T - E(T)| \ge N(c - 1)\Big) \le \frac{\alpha}{(c - 1)^2}$$

Par encadrement, si N est fixé : $\lim_{c \to +\infty} \mathbf{P} \Big(|T - N \ln N| \ge c N \Big) = 0$

12) Soit $\varepsilon > 0$. En utilisant l'inégalité de la question 11.b avec $c = \varepsilon \ln(N)$ (c peut être supposé > 1 pour N assez grand), on obtient

$$\mathbf{P}\Big(|T - N\ln(N)| \ge \varepsilon N\ln(N)\Big) \le \frac{\alpha}{(\varepsilon \ln(N) - 1)^2} \longrightarrow_{N \to +\infty} 0$$

Par encadrement:

$$\lim_{N \to +\infty} \mathbf{P} \Big(|T - N \ln(N)| \ge \varepsilon N \ln(N) \Big) = 0$$

13) PROGRAM ESSEC2011; TYPE Paquet=ARRAY[1..32] OF INTEGER; VAR Jeu : Paquet; S,k : INTEGER PROCEDURE Init(VAR Jeu : Paquet); VAR k : INTEGER; **BEGIN** FOR k := 1 TO 32 DO Jeu[k] := k END; b) PROCEDURE Insertion(VAR Jeu :Paquet); VAR i,k,cartedessus :INTEGER; **BEGIN** k :=1+RANDOM(32);cartedessus :=Jeu[1]; IF k>1 THEN FOR i :=1 TO k-1 DO Jeu[i] := Jeu[i+1]; Jeu[k] :=cartedessus END;

c) Comme écrite dans le sujet, la fonction T est une simulation de la variable $T-1=T_{N-1}$. C'est un peu dommage, cela aurait été plus pertinent d'écrire une simulation de la variable T...

d) BEGIN { programme principal } S := 0;FOR k :=1 TO 100 DO

S := S+T(Jeu);

WRITE('Moyenne =',S/100)

END.

14) (a) Nous supposons d'abord que $n \geq N$.

Si $n \geq T(\omega)$: à l'instant n, toutes les configurations du paquet sont équiprobables, donc :

$$\mathbf{P}_{(T\leq n)}(E_n)=\pi(A).$$

Ainsi
$$\mathbf{P}(E_n \cap (T \le n)) = \mathbf{P}_{(T \le n)}(E_n)\mathbf{P}(T \le n) = \pi(A)\mathbf{P}(T \le n).$$

Dans le cas où n < N, l'événement $(T \le n)$ est impossible et

$$\mathbf{P}(E_n \cap (T \le n)) = 0 = \pi(A)\mathbf{P}(T \le n)$$

(cependant dans ce dernier cas, le calcul de la probabilité conditionnelle n'est pas bien défini.)

- (b) $(E_n \cap (T > n)) \subset (T > n)$ donc $\mathbf{P}(E_n \cap (T > n)) \leq \mathbf{P}(T > n)$.

$$\mu_n(A) = \mathbf{P}(E_n) = \mathbf{P}(E_n \cap (T \le n)) + \mathbf{P}(E_n \cap (T > n))$$

$$\le \pi(A)\mathbf{P}(T \le n) + \mathbf{P}(T > n)$$

$$\le \pi(A) + \mathbf{P}(T > n)$$

(a) μ_n et π étant des probabilités, on a $\mu_n(\overline{A}) = 1 - \mu_n(A)$ et $\pi(\overline{A}) = 1 - \pi(A)$ donc

$$\mu_n(\overline{A}) - \pi(\overline{A}) = \pi(A) - \mu_n(A)$$

(b) L'inégalité de la question 14c donne pour tout $A \subset S_N : \mu_n(A) - \pi(A) \leq \mathbf{P}(T > n)$. En utilisant cette inégalité avec la partie \overline{A} au lieu de A, on a aussi $\mu_n(\overline{A}) - \pi(\overline{A}) = \pi(A) - \mu_n(A) \leq \mathbf{P}(T > n)$ soit finalement

$$|\mu_n(A) - \pi(A)| \le \mathbf{P}(T > n)$$

16) L'inégalité précédente vaut pour toute partie A de S_N , donc en particulier pour une partie réalisant le maximum; ainsi $|d(\mu_n, \pi)| \leq \mathbf{P}(T > n)$ et bien sûr $0 \leq d(\mu_n, \pi)$.

D'autre part, $T = \Delta_1 + \Delta_2 + \cdots + \Delta_{N-1} + 1$ est une somme de variables aléatoires finies presque-sûrement (lois géométriques), donc la variable T est elle-même finie presque-sûrement et $\lim_{N\to+\infty} \mathbf{P}(T>n)=0$. $\overline{\lim_{n \to +\infty} d(\mu_n, \pi) = 0}$ Par encadrement:

- 17) S_1 est la variable aléatoire certaine égale à 1.
- 18) Soit $k \in [2, N]$, $S_k(\Omega) \subset \mathbb{N}^*$. La variable S_k est le temps d'attente d'un premier succès lors de la répétition d'épreuves aléatoires de Bernoulli identiques et indépendantes, la probabilité p_k d'un succès étant égale à la probabilité d'obtenir un des N-(k-1) timbres encore non reçus parmi les Npossibles, soit $p_k = \frac{N-k+1}{N}$. Ainsi, S_k suit une loi géométrique de paramètre $\frac{N-k+1}{N}$. Pour $n \in \mathbb{N}^*$, $\mathbf{P}(S_k = n) = \frac{N - (k-1)}{N} \left(\frac{k-1}{N}\right)^{n-1}$

$$\mathbf{P}(S_k = n) = \frac{N - (k - 1)}{N} \left(\frac{k - 1}{N}\right)^{n - 1}$$

- 19) La loi de S_k est celle de la variable $\Delta_{N-(k-1)}$ (en convenant que Δ_N est la variable certaine égale à 1). En ré-ordonnant l'ordre des termes, on peut écrire $S = S_N + S_{N-1} + \cdots + S_2 + S_1$ et comme les variables S_k sont indépendantes, S suit bien la même loi que la variable : $\Delta_1 + \Delta_2 + \cdots + \Delta_{N-1} + \Delta_N = \underline{T}$
- 20) Soit $m \in \mathbb{N}^*$.
 - (a) (S > m) correspond à l'événement "le jour m, la collection des timbres reçus n'est pas encore complète" ou de manière équivalente "le jour m, il existe au moins un des N timbres qui n'a pas été obtenu". Donc $|(S>m)=B_1^m\cup B_2^m\cup\ldots\cup B_N^m|$

(b) Soit
$$j \in [1, N]$$
. $\mathbf{P}(B_i^m) = \left(\frac{N-1}{N}\right)^m = \left(1 - \frac{1}{N}\right)^m$

(c)
$$\mathbf{P}(S > m) = \mathbf{P}(\bigcup_{j=1}^{N} B_{j}^{m}) \le \sum_{j=1}^{N} \mathbf{P}(B_{j}^{m}) = N\left(1 - \frac{1}{N}\right)^{m}$$
.

- 21) (a) On établit l'inégalité : $\forall x \in]-1, +\infty[$, $\ln(1+x) \le x$, par exemple grâce à une étude des variations de la fonction $x \mapsto \ln(1+x) x$ sur $]-1, +\infty[$.
 - (b) $\ln\left(1-\frac{1}{N}\right) \le -\frac{1}{N}$ car -1/N > -1 et comme exp est croissante : $e^{m\ln\left(1-\frac{1}{N}\right)} \le e^{-m/N}$. Donc :

$$\mathbf{P}(T > m) = \mathbf{P}(S > m) = N\left(1 - \frac{1}{N}\right)^m = Ne^{m\ln\left(1 - \frac{1}{N}\right)} \le Ne^{-m/N}$$

22) (a) Soit
$$c > 0$$
 et $n \ge N \ln N + cN$ on a : $d(\mu_n, \pi) \le \mathbf{P}(T > n) \le Ne^{-n/N}$.
Or $-n/N \le -\ln(N) - c$ et comme exp est croissante : $e^{-n/N} \le e^{-\ln(N) - c} = \frac{1}{N}e^{-c}$. Ainsi

$$d(\mu_n, \pi) \le e^{-c}$$

- (b) Application numérique. Avec N=32 on cherche n de sorte que $d(\mu_n,\pi) \leq 0.2$. Vu l'inégalité précédente, il suffit de choisir c de sorte que $e^{-c} \leq 0.2$ soit $c \geq \ln 5$. Donc $n \geq N \ln(N) + \ln(5)N = 32 \ln(160) \approx 162.4$.
 - Il faudra donc au moins 163 battages par insertions pour considérer le paquet bien mélangé.