Deuxième composition de mathématiques

Session 1996

Première partie

- 1. Puisque T n'est pas nul, on a en fait $r \geq 2$.
 - (a) Puisque T n'est pas nul, dim $\operatorname{Im} T \geq 1$. Puisque $\det(T^r) = 0 = (\det T)^r$, T n'est pas inversible et dim $\ker T \geq 1$. Or le théorème du rang impose $(\dim \ker T 1) + (\dim \operatorname{Im} T 1) = 0$, donc nécessairement

$$\dim \ker T = 1 = \dim \operatorname{Im} T.$$

(b) Comme $r-1 \geq 1$, $\operatorname{Im} T^{r-1} \subset \operatorname{Im} T$; comme T^{r-1} n'est pas nul, par définition de r, on a: $1 \leq \dim T^{r-1} \leq \dim T = 1$, donc $\operatorname{Im} T^{r-1} = \operatorname{Im} T$, puisqu'on a une inclusion et égalité des dimensions. De même, $TT^{r-1} = 0$ impose $\operatorname{Im} T^{r-1} = \operatorname{Im} T \subset \ker T$, donc $\ker T = \operatorname{Im} T$ par le même argument.

Soit alors e_2 un vecteur non nul de Im $T = \ker T$, et $e_1 \in E$ tel que $T(e_1) = e_2$; comme $e_1 \notin \ker T = Ke_2$, $\{e_1, e_2\}$ est une famille libre de deux vecteurs de K^2 , donc une base de K^2 . Dans cette base, la matrice de T est $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

Il existe une base de E dans laquelle T est représenté par $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

Dans cette base, la matrice de T^2 est $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ donc $r \le 2$ puis r = 2.

2. Fixons $T \in \mathcal{A}$ non nul et une base $\{e_1, e_2\}$ dans laquelle T est représenté par $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

Si un élément $U \in \mathcal{L}(E, E)$ est représenté dans cette base par $\begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix}$ avec $c \in K$, alors $U = cT \in \mathcal{A}$.

Réciproquement: si $U \in \mathcal{A}$, alors $U^2 = 0$ (soit que U soit nul, soit en application de la question 1. sinon). Soit donc $U \in \mathcal{A}$, et $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ sa matrice dans $\{e_1, e_2\}$; alors $U - cT \in \mathcal{A}$, donc $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} a^2 & ab + bd \\ 0 & d^2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ donc a = d = 0. Si b était non nul, $T + b^{-1}(U - cT) \in \mathcal{A}$, alors que la matrice $M = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ de cet endomorphisme vérifie $M^2 \neq 0$. Au total, U est bien représenté dans $\{e_1, e_2\}$ par une matrice du type attendu

Il existe une base de E dans laquelle les matrices représentant les éléments de \mathcal{A} sont exactement les matrices $\begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix}$ avec $c \in K$.

Deuxième partie

Ce qui suit est plus ou moins du cours. On a immédiatement $I_E = \sum_i P_i$ et $P_i P_j = \delta_{i,j} P_j$.

3. Pour $x \in E$, $(T(x))_i = P_i(T(x)) = P_iT\left(\sum_j x_j\right) = \sum_j P_iT(x_j) = \sum_j P_iT_j(x_j)$ où $T_j \in \mathcal{L}(E_j, E)$ est la restriction de T à E_j ; clairement, $T_{i,j} = P_iT_j \in \mathcal{L}(E_j, E_i)$ convient.

La construction des $T_{i,j}$ est effectuée.

4. Puisque $(T(x))_i = \sum_j T_{i,j}(x_j) = \sum_j T_{i,j}P_j(x)$, on a $T = \sum_{i,j} T_{i,j}P_j$, et de même $S = \sum_{i,j} S_{i,j}P_j$. Si l'on note toujours $U_k \in \mathcal{L}(E_k, E)$ la restriction de $U \in \mathcal{L}(E, E)$ à E_k , on écrit $ST = \left(\sum_{i,j} S_{i,j}P_j\right)T$, puis

$$(ST)_k = \left(\sum_{i,j} S_{i,j} P_j\right) T_k = \sum_{i,j} S_{i,j} (P_j T_k) = \sum_{i,j} S_{i,j} T_{j,k} = \sum_i \left(\sum_j S_{i,j} T_{j,k}\right)$$

avec $\sum_{j} S_{i,j} T_{j,k} \in \mathcal{L}(E_k, E_i)$ donc l'écriture précédente donne la décomposition de $(ST)_k(x)$ suivant $E = E_1 \bigoplus \cdots \bigoplus E_n$ et comme $(ST)_{i,k} = P_i(ST)_k$:

$$(ST)_{i,k} = \sum_{j} S_{i,j} T_{j,k}.$$

On retrouve là le principe des calculs matriciels par blocs.

Troisième partie

5. Si l'on avait $E_3 = \{0\}$, grâce au théorème du rang, il viendrait $E = \ker T \bigoplus \operatorname{Im} T$; le théorème fondamental d'isomorphisme fournirait par restriction un isomorphisme T' de $\operatorname{Im} T$ (suplémentaire de $\ker T$) sur $\operatorname{Im} T$. Mais alors, puisque $r-1 \geq 1$, pour tout $x \in E$, $T^r(x) = T'(T^{r-1}(x)) = 0$ impliquerait $T^{r-1}(x) = 0$, soit $T^{r-1} = 0$, en contradiction avec la définition de r.

Si l'on avait $E_3 = E$, alors $E \subset \ker T$ et $E \subset \operatorname{Im} T$, en contradiction avec le théorème du rang.

$$E_3$$
 est distinct de $\{0\}$ et de E .

6. On a $E_3 = \operatorname{Im} T \Leftrightarrow \operatorname{Im} T \subset \ker T \Leftrightarrow T^2 = 0$ donc puisque $T \neq 0$:

est nulle.

$$E_3 = \operatorname{Im} T \Longleftrightarrow r = 2$$

7. Puisque $E_1 \bigoplus \operatorname{Im} T = E$, pour tout $x \in E$, $P_1(T(x)) = 0$, la première ligne de la matrice par blocs est nulle (ou bien: $(T(x))_1 = T_{1,1}(x_1) + T_{1,2}(x_2) + T_{1,3}(x_3)$ et comme $E = E_1 \bigoplus E_2 \bigoplus E_3$, $T_{1,1}(x_1) = T_{1,2}(x_2) = T_{1,3}(x_3) = 0$ pour tout $(x_1, x_2, x_3) \in E_1 \times E_2 \times E_3$. Puisque $E_3 \subset \ker T$, T(x) = 0 pour tout $x \in E_3$ et la dernière colonne de la matrice par blocs

La vérification est effectuée.

8. On peut travailler matriciellement ou voir que, grâce à 4.:

$$(T^2)_{2,2} = \sum_{j=1}^3 T_{2,j} T_{j,2} = T_{2,2}^2$$

puis par récurrence $(T^k)_{2,2} = T^k_{2,2}$; en particulier $(T^r)_{2,2} = 0 = (T_{2,2})^r$, donc

$T_{2,2}$ est nilpotent.

On a $T_{2,2} \in \mathcal{L}(E_2, E_2)$ et $\operatorname{Im} T = E_2 \bigoplus E_3$; comme $r \geq 3$, E_2 n'est pas nul (d'après 6.), et comme E_3 n'est pas nul (d'après 5.), on voit que dim $E_3 = p$ est un entier strictement positif strictement inférieur à n.

Si $T_{2,2} = 0$, toute base adaptée à $E = E_1 \bigoplus E_2 \bigoplus E_3$ convient.

Sinon, si l'on admet que tout endomorphisme non nul nilpotent de \mathbb{R}^d avec 0 < d < n admet une base dans laquelle il est représenté par une matrice triangulaire inférieure à diagonale nulle, le résultat s'applique à $T_{2,2}$ (à un isomorphisme près entre E_2 et $\mathbb{R}^{\dim E_2}$). La concaténation d'une base de E_1 , de la base construite, et d'une base de E_3 donne alors une base de E dans laquelle la matrice de T est triangulaire inférieure à diagonale nulle.

Comme l'initialisation pour n=2 a été vue dans la première partie, le résultat attendu est acquis par récurrence (le cas n=1 ne se pose pas, il n'y a pas d'endomorphisme nilpotent non nul de \mathbb{R} .)

Il existe une base de E dans laquelle T est représenté par une matrice triangulaire inférieure à diagonale nulle.

9. On peut considérer une matrice triangulaire inférieure à diagonale nulle représentant T, et voir comment l'augmentation de k dans le calcul de T^k augmente le nombre de termes nuls jusqu'à obtenir $T^n = 0$, donc $n \ge r$, ou plus généralement introduire e_r non nul dans $\operatorname{Im} T^{r-1}$, puis, considérant e_1 tel que $e_r = T^{r-1}(e_1)$, poser $e_i = T^{i-1}(e_1)$ pour $i = 1, \ldots, r$, et vérifier que $\{e_1, \ldots, e_r\}$ est libre dans \mathbb{R}^n , ce qui garantira

$$r \leq n$$
.

Voyons ce dernier point: si $x = \sum_{i=1}^{r} \alpha_1 e_i = 0$, alors $T^{r-1}(x) = 0 = \alpha_1 e_r + \sum_{i=2}^{r} \alpha_i T^r (T^{i-2}(e_1)) = \alpha_1 e_r$, donc $\alpha_1 = 0$; supposons $\alpha_1 = \dots \alpha_k = 0$, avec $1 \le k \le r-1$; alors $T^{r-k-1}(x) = 0 = T^{r-k-1}\left(\sum_{i=k+1}^{r} \alpha_i T^{i-1}(e_1)\right) = \alpha_{k+1} e_r + \sum_{i=k+2}^{n} \alpha_i T^r (T^{i-k-2}(e_1)) = \alpha_{k+1} e_r$, donc $\alpha_{k+1} = 0$; par récurrence, tous les α_i sont bien nuls.

10. Si (e_1, e_2, e_3, e_4) est la base canonique de K^4 , la matrice de T dans la base (e_1, e_3, e_4, e_2) est

$$\left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

On vérifie alors que $T^4 = 0$ et $T^3 \neq 0$, donc $r = 4 \leq n = 4$. Cette base provient naturellement de l'étude précédente; ici ker $T = Ke_2$, Im $T = vect(e_2, e_3, e_4)$, $E_3 = Ke_2$, et l'on peut prendre $E_1 = Ke_1$ et $E_2 = vect(e_3, e_4)$. La base (e_1, e_3, e_4, e_2) est adaptée à $E = E_1 \bigoplus E_2 \bigoplus E_3$ et donne la matrice précédente.

Quatrième partie

11. Considérons r-1 éléments T_1, \ldots, T_{r-1} de \mathcal{A} , et $P=T_1 \ldots T_{r-1} \in \mathcal{A}$; pour tout $T \in \mathcal{A}$, Im $T \subset \ker P$ car PT=0 puisque ce produit comporte r éléments de \mathcal{A} ; par définition même, on en déduit $\mathcal{I}(\mathcal{A}) \subset \ker P$ car $\ker P$ est un sous-espace vectoriel de E qui contient toutes les images des éléments de \mathcal{A} ; si l'on avait $\mathcal{I}(\mathcal{A}) = E$, on aurait $\ker P = E$, donc $P = T_1 \ldots T_{r-1}$ serait nul quels que soient les éléments T_1, \ldots, T_{r-1} de \mathcal{A} , en contradiction avec la minimalité de r.

$$\mathcal{I}(\mathcal{A}) \neq E$$
.

Comme E_3 est contenu dans $\mathcal{I}(\mathcal{A})$, E_3 n'est pas égal à E.

Soit $T \in \mathcal{A}$ non nul; alors $\ker T \subset \mathcal{K}(\mathcal{A})$ et $\operatorname{Im} T \subset \mathcal{I}(\mathcal{A})$, donc $E_3' = \operatorname{Im} T \cap \ker T \subset E_3$; or $T^r = 0$ et d'après la question 5., E_3' n'est pas réduit à $\{0\}$, donc E_3 n'est pas nul non plus.

$$E_3$$
 est distinct de $\{0\}$ et de E .

12. On a, puisque $\mathcal{K}(\mathcal{A})$ est un sous-espace vectoriel de E, par définition de $\mathcal{I}(\mathcal{A})$:

$$E_{3} = \mathcal{I}(\mathcal{A}) \Leftrightarrow \mathcal{I}(A) \subset \mathcal{K}(\mathcal{A}) \Leftrightarrow \forall T \in \mathcal{A}, \operatorname{Im} T \subset \mathcal{K}(\mathcal{A}) = \bigcap_{U \in \mathcal{A}} \ker U.$$

En particulier, si $E_3 = \mathcal{I}(\mathcal{A})$, en prenant $T \in \mathcal{A}$ non nul (et donc $T^r = 0$), on a Im $T \subset \ker T$, et nécessairement r = 2 d'après la question 6.

Réciproquement, si r=2, pour $T\in\mathcal{A}$, on a UT=0 pour tout $U\in\mathcal{A}$, donc $\operatorname{Im} T\subset\ker U$ pour tout $U\in\mathcal{A}$, donc $\operatorname{Im} T\subset\mathcal{K}(\mathcal{A})$, et finalement $E_3=\mathcal{I}(\mathcal{A})$.

$$\boxed{E_3 = \mathcal{I}(\mathcal{A}) \Longleftrightarrow r = 2.}$$

13. (a) Puisque l'énoncé donne que $\mathcal{A}_{2,2}$ est un espace vectoriel inclus dans $\mathcal{L}(E_2, E_2)$, vérifions la stabilité pour le produit et la commutativité de ce dernier. Avec des notations évidentes, puisque $TU = V = UT \in \mathcal{A}$ si $(T, U) \in \mathcal{A}^2$,

$$\begin{pmatrix} 0 & 0 & 0 \\ T_{2,1} & T_{2,2} & 0 \\ T_{3,1} & T_{3,2} & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ U_{2,1} & U_{2,2} & 0 \\ U_{3,1} & U_{3,2} & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ V_{2,1} & V_{2,2} & 0 \\ V_{3,1} & V_{3,2} & 0 \end{pmatrix}$$

On a¹ donc que $T_{2,2}U_{2,2}=U_{2,2}T_{2,2}=V_{2,2}$ est un élément de l'espace $\mathcal{A}_{2,2}$. Puisque le produit de r éléments de \mathcal{A} est nul, ces calculs montrent qu'a fortiori le produit de r éléments de $\mathcal{A}_{2,2}$ est nul, donc l'algèbre est nilpotente d'indice $r' \leq r$.

 $\mathcal{A}_{2,2}$ est une sous-algèbre commutative nilpotente de $\mathcal{L}\left(E_{2},E_{2}\right)$.

¹cette égalité traduit que $T \to T_{2,2}$ est un morphisme d'algèbres, les algèbres étant ici non unitaires

Si r > 3, alors par minimalité de r, on peut trouver $(S, T, U) \in \mathcal{A}^3$ tel que le produit

$$STU = \left(egin{array}{ccc} 0 & 0 & 0 \ S_{2,2}T_{2,2}U_{2,1} & S_{2,2}T_{2,2}U_{2,2} & 0 \ S_{3,2}T_{2,2}U_{2,1} & S_{3,2}T_{2,2}U_{2,2} & 0 \end{array}
ight)$$

soit non nul, ce qui impose $T_{2,2} \neq 0$, et donc $\mathcal{A}_{2,2}$ non nulle. Ainsi $\mathcal{A}_{2,2}$ nulle implique $r \leq 3$ (donc si l'on suppose $r \geq 3$, r = 3).

Montrons que la réciproque est vraie, c'est-à-dire que, puisqu'une implication est plus ou moins déjà établie:

$$\forall T \in \mathcal{A}, \quad (T_{2,2} \neq 0) \iff \exists (S,U) \in \mathcal{A}^2, \ STU \neq 0.$$

Cette propriété permettra, si $\mathcal{A}_{2,2}$ est non nulle, de trouver trois éléments de \mathcal{A} dont le produit est non nul, et ainsi r > 3. On aura donc

$$\mathcal{A}_{2,2}$$
 est nulle si et seulement si $r \leq 3$.

(donc si r=3 puisque l'on suppose $r\geq 3$, mais cette formulation me sert au 16.) Montrons donc la partie manquante du lemme² énoncé, à savoir:

$$\forall T \in \mathcal{A}, \quad (T_{2,2} \neq 0) \Longrightarrow \exists (S,U) \in \mathcal{A}^2, \ STU \neq 0.$$

Si l'on suppose $T_{2,2}$ non nul, on peut considérer $x \in E_2$ tel que $T_{2,2}(x) \neq 0$. Comme $E_2 \subset \mathcal{I}(\mathcal{A})$, x est du type $x = \sum_k \alpha_k U_k(y_k)$ ou mieux, puisque $x \in E_2$, $x = \sum_k P_2 U_k(\alpha_k y_k)$

avec $U_k \in \mathcal{A}$; comme $T_{2,2}(x) \neq 0$, il existe k tel que $T_{2,2}P_2U_k(\alpha_k y_k)$; notons plutôt y à la place de $\alpha_k y_k$ et $U = U_k$; on a trouvé y tel que $T_{2,2}P_2U(y)$ soit non nul; comme cet élément non nul est dans $E_2 \subset \mathcal{I}(\mathcal{A})$, il ne saurait être aussi dans $\mathcal{K}(\mathcal{A})$ (puisque $E_2 \cap E_3 = \{0\}$) et l'on peut trouver $S \in \mathcal{A}$ tel que $ST_{2,2}P_2U(y)$ soit non nul. Il reste à vérifier que $STUP(y) = ST_{2,2}P_2U(y)$ pour conclure que l'on a trouvé (S,T) tel que $STU \neq 0$.

Calculons matriciellement : $TP_2U(y)$

$$\begin{pmatrix} 0 & 0 & 0 \\ T_{2,1} & T_{2,2} & 0 \\ T_{3,1} & T_{3,2} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ P_2U(y) \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ T_{2,2}P_2U(y) \\ T_{3,2}P_2U(y) \end{pmatrix}$$

puis $ST_{2,2}P_2U\left(y\right)=SP_2TP_2U\left(y\right)$, sachant que $P_2T_{3,2}P_2U\left(y\right)=0$ car $T_{3,2}$ est à valeurs dans E_3 :

$$\begin{pmatrix} 0 & 0 & 0 \\ S_{2,1} & S_{2,2} & 0 \\ S_{3,1} & S_{3,2} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ T_{2,2}P_2U(y) \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ S_{2,2}T_{2,2}P_2U(y) \\ S_{3,2}T_{2,2}P_2U(y) \end{pmatrix}$$

Comparons au calcul matriciel de STUP(y):

$$\begin{pmatrix} 0 & 0 & 0 \\ S_{2,2}T_{2,1} & S_{2,2}T_{2,2} & 0 \\ S_{3,2}T_{2,1} & S_{3,2}T_{2,2} & 0 \end{pmatrix} \begin{pmatrix} P_1U(y) \\ P_2U(y) \\ P_3U(y) \end{pmatrix} = \begin{pmatrix} 0 \\ S_{2,2}T_{2,1}P_1U(y) + S_{2,2}T_{2,2}P_2U(y) \\ S_{3,2}T_{2,1}P_1U(y) + S_{3,2}T_{2,2}P_2U(y) \end{pmatrix}$$

L'égalité annoncée tient au fait que $P_1U(y) = 0$, puisque $U(y) \in \mathcal{I}(\mathcal{A})$ et que P_1 est une projection sur un supplémentaire de $\mathcal{I}(\mathcal{A})$.

²Ce résultat mériterait de faire l'objet d'une question spécifique. Il s'énonce aussi en disant que $T_{2,2}$ est nul ssi pour tout $U \in \mathcal{A}$, Im $(TU) \subset \mathcal{K}(\mathcal{A})$, ou ssi pour tout $S \in \mathcal{A}$, $\mathcal{I}(\mathcal{A}) \subset \ker(ST)$.

(b) Comme à la question 8., on raisonne par récurrence sur $n \geq 2$. Pour n = 1, c'est trivial; pour n = 2, le résultat est établi à la question 2. Si le résultat s'applique à tout sous-algèbre nilpotente commutative de \mathbb{R}^d lorsque $1 \leq d \leq n-1$, il s'applique à $\mathcal{A}_{2,2}$ puisque $1 \leq d = \dim E_2 \leq n-1$ ($\dim E_2 = 0$ imposerait $E_3 = \mathcal{I}(\mathcal{A})$, or $r \geq 3$; $\dim E_2 = n$ imposerait $E \subset E_2 \subset \mathcal{I}(\mathcal{A})$ en contradiction avec la question 11.) Par concaténation d'une base de E_1 , d'une base obtenue par hypothèse de récurrence, et d'une base de E_3 , on obtient une base dans laquelle tout élément de \mathcal{A} est représenté par une matrice triangulaire inférieure à diagonale nulle.

L'existence d'une base ad hoc est établie.

(c) On reprend la première idée de la question 9: vérifions que pour tout k = 1, ... n, le produit de k éléments de \mathcal{A} est représenté dans la base précédente par une matrice $(m_{i,j})$ dont les termes $m_{i,j}$ sont nuls lorsque $i \leq j + k - 1$.

Pour k = 1, cela résulte de la question précédente.

Supposons le résultat vrai pour k avec $1 \le k \le n-1$, et considérons $T_1, \ldots, T_k, T_{k+1}$ dans \mathcal{A} ; l'hypothèse de récurrence assure que $T = T_1 \cdots T_k$ est représenté par $(t_{i,j})$ avec $t_{i,j} = 0$ si $i \le j + k - 1$; la question précédente assure que T_{k+1} est représenté par $(u_{i,j})$

avec $u_{i,j} = 0$ si $i \leq j$; alors TT_{k+1} est représenté par $(m_{i,j})$ avec $m_{i,j} = \sum_{r=1}^{n} t_{i,r} u_{r,j}$.

Si $i \leq j + k$, donc $i - k \leq j$: pour $1 \leq r \leq n$, soit $r \leq j$, alors $u_{r,j} = 0$, soit $r \geq j + 1 \geq i - k + 1$, alors $t_{i,r} = 0$; donc $m_{i,j} = 0$, ce qui est la résultat attendu.

Comme pour tout $(i,j) \in [1,n]^2$, on a toujours $i \leq j+n-1$ (soit $i \leq n-1$, et c'est clair, soit i=n, mais $j \geq 1$), le produit de n éléments quelconques de \mathcal{A} est toujours nul. Par définition de r, on a donc

$$r \leq n$$
.

14. Montrons, à l'aide du résultat intermédiaire de la question 13.a, que

$$r' = r - 2$$

Si r'>r-2, on peut trouver r-2 éléments de $\mathcal{A}_{2,2}$ dont le produit n'est pas nul, donc r-2 éléments T_1,\ldots,T_{r-2} de \mathcal{A} tel que $(T_1)_{2,2}\cdots(T_{r-2})_{2,2}=(T_1\cdots T_{r-2})_{2,2}\neq 0$. Posons $T=T_1\ldots T_{r-2}\in\mathcal{A}$; d'après le résultat évoqué précédemment, on peut trouver S et U dans \mathcal{A} tels que STU soit non nul; or STU est le produit de r éléments de \mathcal{A} , c'est contradictoire. Si r'+2< r, on peut trouver r'+2 éléments $T_1,\ldots,T_{r'+2}$ de \mathcal{A} dont le produit est non nul; posons $S=T_1,\,T=T_2\cdots T_{r'+1}$ et $U=T_{r'+2}$. Le même résultat montre, puisque $STU\neq 0$, que $T_{2,2}=(T_2)_{2,2}\cdots(T_{r'+1})_{2,2}$ est non nul, alors qu'il s'agit du produit de r' éléments de $\mathcal{A}_{2,2}$; c'est également contradictoire, et le résultat est acquis.

15. (a) Soit $T \in \mathcal{A}$; pour tout $U \in \mathcal{A}$, $TU = \begin{pmatrix} 0 & 0 & 0 \\ T_{2,2}U_{2,1} & T_{2,2}U_{2,2} & 0 \\ T_{3,2}U_{2,1} & T_{3,2}U_{2,2} & 0 \end{pmatrix}$ donc $(TU)_{2,1} = T_{2,2}U_{2,1}$; ainsi, pour tout $x \in E_1$, $T_{2,2}(U_{2,1}(x)) = (TU)_{2,1}(x) \in \text{Im}(TU)_{2,1} \subset \mathcal{I}(\mathcal{A}_{2,1})$; comme tout $y \in \mathcal{I}(\mathcal{A}_{2,1})$ est combinaison linéaires d'éléments du type $U_{2,1}(x)$ avec $x \in E_1$, il en résulte que $T_{2,2}(y) \in \mathcal{I}(\mathcal{A}_{2,1})$ (par linéarité de $T_{2,2}$ et stabilité de $\mathcal{I}(\mathcal{A}_{2,1})$), ce qui établit bien que

$$\forall T \in \mathcal{A}, \quad T_{2,2}\left(\mathcal{I}\left(\mathcal{A}_{2,1}\right)\right) \subset \mathcal{I}\left(\mathcal{A}_{2,1}\right).$$

(b) Par définition de $\mathcal{I}(\mathcal{A}_{2,1})$, on a bien sûr $\mathcal{I}(\mathcal{A}_{2,1}) \subset E_2$. S'il n'y a pas égalité, on peut introduire (en dimension finie) un supplémentaire E', de sorte que $E_2 = E' \bigoplus \mathcal{I}(\mathcal{A}_{2,1})$. Cela permet de considérer les projecteurs P_1, P, P', P_3 associés à $E = E_1 \bigoplus E' \bigoplus \mathcal{I}(\mathcal{A}_{2,1}) \bigoplus E_3$. Considérons $(e_k)_k$ une base adaptée à la somme directe $E_2 = E' \bigoplus \mathcal{I}(\mathcal{A}_{2,1})$, avec $e_k \in \mathcal{I}(\mathcal{A}_{2,1})$ si $k \geq p$ et $e_k \in E'$ sinon. D'après la question précédente, si $T \in \mathcal{A}$, pour $k \geq p$, $T_{2,2}(e_k)$ a des composantes nulles suivant les e_j tels que j < p, donc la matrice de $T_{2,2}$ dans cette base est du type $\begin{pmatrix} A_T & 0 \\ C_T & D_T \end{pmatrix}$.

Il en résulte alors le lemme suivant

$$\forall y \in E, \quad PT(y) = PT_{2,2}P(y).$$

♣ En effet,

$$PT(y) = P[(T(y))_{2}] = P(T_{2,1}(y_{1}) + T_{2,2}(y_{2})) = PT_{2,2}(y_{2})$$

car $T_{2,1}(y_1) \in \mathcal{I}(A_{2,1})$ a une projection nulle, par définition de P. Alors

$$PT(y) = PT_{2,2}(Py) + PT_{2,2}(P'y) = PT_{2,2}(Py)$$

car $P'y \in \mathcal{I}(\mathcal{A}_{2,1})$, donc, avec 15.*a*, $T_{2,2}(P'y) \in \mathcal{I}(\mathcal{A}_{2,1})$ est d'image nulle par P. \clubsuit Soit alors x dans E'; comme $E' \subset E_2 \subset \mathcal{I}(\mathcal{A})$, x est de la forme $x = \sum_k U_k(x_k)$ avec $U_k \in \mathcal{A}$; donc

$$x = Px = \sum_{k} PU_{k}(x_{k}) = \sum_{k} P(U_{k})_{2,2}(Px_{k}) = \sum_{k} P(U_{k})_{2,2}(y_{k})$$

en vertu du lemme précédent, avec $y_k = Px_x$. Mais $y_k \in E'$, on peut donc recommencer: y_k peut s'écrire $\sum_{i_k} P(T_{i_k})_{2,2}(z_{i_k})$, donc

$$x = \sum_{k} \sum_{i_{k}} P(U_{k})_{2,2} P(T_{i_{k}})_{2,2} (Py_{i_{k}})$$

Cette formule se simplifie, car $PU_{2,2}PT_{2,2}=PU_{2,2}T_{2,2}=P\left(UT\right)_{2,2}$, puisque

$$\begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} A_U & 0 \\ C_U & D_U \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} A_T & 0 \\ C_T & D_T \end{pmatrix}$$

$$= \begin{pmatrix} A_U A_T & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} A_U & 0 \\ C_U & D_U \end{pmatrix} \begin{pmatrix} A_T & 0 \\ C_T & D_T \end{pmatrix}$$

donc

$$x = \sum_{k} \sum_{i_k} P(U_k T_{i_k})_{2,2} (Py_{i_k})$$

En réitérant le procédé, on peut écrire x comme somme de termes du type PV_{22} (Pz) où $V_{2,2}$ est le produit d'autant de termes que l'on veut du type $U_{2,2}$, c'est-à-dire d'éléments de $A_{2,2}$. Si l'on en prend r' au moins, on obtient que x est nul, ceci pour tout $x \in E'$, ce qui est contradictoire.

On peut maintenant conclure que

$$\mathcal{I}\left(\mathcal{A}_{2,1}\right)=E_{2}.$$

16. (a) Si T = 0, on a $T_{2,2} = 0$ et $T_{3,2} = 0$. Supposons maintenant T non nul; c'est un élément nilpotent de \mathcal{A} ; soit s le plus petit entier vérifiant $T^s = 0$, avec donc $s \ge 2$.

Considérons \mathcal{A}' l'espace vectoriel engendré par les T^k avec $k \geq 1$. La stabilité par le produit étant claire, c'est une sous-algèbre commutative de \mathcal{A} . Le produit de s éléments de \mathcal{A}' est une combinaison linéaire de T^k avec $k \geq s$, donc est nul. L'ordre de nilpotence de \mathcal{A}' est donc inférieur à s, mais pas strictement puisque T^{s-1} n'est pas nul. Donc \mathcal{A}' est d'ordre s exactement.

Si $s \geq 4$, introduisons les espaces E_1' , E_2' , E_3' associés à \mathcal{A}' analogues à E_1 , E_2 , E_3 ; d'après

15.b,
$$E'_{2} = \mathcal{I}(\mathcal{A}'_{2,1})$$
; or pour tout entier $k \geq 2$, T^{k} est représenté par $\begin{pmatrix} 0 & 0 & 0 \\ 0 & T^{k}_{2,2} & 0 \\ 0 & T_{3,2}T^{k-1}_{2,2} & 0 \end{pmatrix}$

puisque T est représenté par $\begin{pmatrix} 0 & 0 & 0 \\ 0 & T_{2,2} & 0 \\ T_{3,1} & T_{3,2} & 0 \end{pmatrix}$; il est clair que $\mathcal{I}(\mathcal{A}'_{2,1})$ est nul (car

 $T_{2,1}=0$), donc par définition de E_2' , $E_3'=\mathcal{I}\left(\mathcal{A}'\right)$, ce qui impose, d'après la question 12., que s=2, ce qui est contradictoire. Donc $s\leq 3$. D'après la question 13.a, $\mathcal{A}_{2,2}'$ est nulle, en particulier

$$T_{2,2}=0$$

et l'on voit que $T^k=0$ pour $k\geq 2$, donc $T^2=0$ également. Finalement, $T^2=0, s=2$. Puisque $T_{2,2}$ et $T_{2,1}$ sont nuls, on vérifie que

$$\begin{pmatrix} 0 & 0 & 0 \\ S_{2,1} & S_{2,2} & 0 \\ S_{3,1} & S_{3,2} & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ T_{3,1} & T_{3,2} & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

i.e. que pour tout $S \in \mathcal{A}$, ST = 0; mais l'algèbre \mathcal{A} est commutative, donc pour tout $S \in \mathcal{A}$, TS = 0, soit $\operatorname{Im} S \subset \ker T$. Il en résulte que $\mathcal{I}(\mathcal{A}) \subset \ker T$, et a fortiori que $E_2 \subset \ker T$, donc

$$T_{3,2}=0$$

puisque pour $a \in E_2$, le calcul de T(a) est représenté matriciellement par

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ T_{3,1} & T_{3,2} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ a \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ T_{3,2}a \end{pmatrix}.$$

(b) Prenons T comme défini dans la question 8.; avec les notations de cette question, T est

ici
$$U_{2,1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $U_{2,2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, $U_{3,2} = \begin{pmatrix} 0 & 0 \end{pmatrix}$, mais $U_{3,1} = (1)$ non nul.

 $T_{3,1}$ n'est pas nécessairement nul.