Corrigé CCP mathématiques | 2010

1.1

On a $u_n(x) \ge 0$ pour tout $n \in N^*$ et $x \in D$. De plus $u_n(x) \sim \frac{1}{n^2}$ lorsque n tend vers $+\infty$. Donc $\sum u_n(x)$ converge (séries de Riemann, $n \ge 2$).

1.2

1.2.1 $u_n(x) = (n+x)^{-2}$ donc par un calcul immédiat

$$u_n^{(p)}(x) = (-2)(-3)\dots(-(p+1))(n+x)^{-2-p} = \frac{(-1)^p(p+1)!}{(n+x)^{2+p}}$$

1.2.2 On a pour tous éléments x de [a,b] et $n \in N^*$ $0 < n+a \le n+x \le n+b$ d'où $0 < \frac{1}{(n+x)^{2+p}} \le \frac{1}{(n+a)^{2+p}}$ pour tout entier naturel p.

La série $\sum u_n^{(p)}$ converge donc normalement sur [a,b]

Par conséquent, si $p \in N^*$, comme $\sum u_n$ converge simplement, et que $\sum u_n^{(k)}$ converge normalement pour tout $k \in [[1,p]]$,

1.2.3 *U* est dérivable à tout ordre *p* sur tout segment $[a,b] \subset]-1,+\infty[$, et donc sur

]
$$-1,+\infty[$$
 et $\forall x \in]$ $-1,+\infty[$ $U^{(p)}(x)=(-1)^p(p+1)!\sum_{n=1}^{+\infty}\frac{1}{(n+x)^{2+p}}$

U est donc de classe C^{∞} sur] $-1,+\infty$ [

1.3

1.3.1
$$U(x) = \sum_{n=1}^{N} \frac{1}{(x+n)^2} + \sum_{n=N+1}^{+\infty} \frac{1}{(x+n)^2} = \sum_{n=1}^{N} \frac{1}{(x+n)^2} + \sum_{n=1}^{+\infty} \frac{1}{(x+n+N)^2} = U_N(x) + U(x+N)$$

1.3.2 Pour tout $x \in]-N-1,-N[$, on a: $U(x)=U_N(x)+U(x+N)$ avec $x+N \in]-1,+\infty[$

L'application U_N est une fraction rationnelle donc est de classe C^{∞} sur]-N-1,-N[où elle est définie.

L'application $x \to x + N$ est de classe C^{∞} (fonction affine), et U est de classe C^{∞} sur $]-1,+\infty[.$

Donc par composition: $x \to U(x+N)$ est de classe C^{∞} sur]-N-1,-N[et

$$U^{(p)}(x) = U_N^{(p)}(x) + U^{(p)}(x+N) = (-1)^p (p+1)! \sum_{n=1}^N \frac{1}{(n+x)^{2+p}} + (-1)^p (p+1)! \sum_{n=N+1}^{+\infty} \frac{1}{(n+x)^{2+p}} =$$
Soit à nouveau:
$$U^{(p)}(x) = (-1)^p (p+1)! \sum_{n=1}^{+\infty} \frac{1}{(n+x)^{2+p}}$$

Soit à nouveau:
$$U^{(p)}(x) = (-1)^p (p+1)! \sum_{n=1}^{+\infty} \frac{1}{(n+x)^{2+p}}$$

U est donc de classe C^{∞} sur]-N-1,-N[.

Donc U est de classe C^{∞} sur chacun des intervalles dont D est la réunion, donc sur D

1.3.3 On a donc
$$\sum_{n=1}^{+\infty} \frac{1}{(n+x)^p} = \frac{(-1)^p}{(p-1)!} U^{(p-2)}(x)$$

1.4 On pose
$$U_0(x) = 0$$
. Pour $x \in D$ $U(x) = \frac{1}{(x+N)^2} + U_{N-1}(x) + U(x+N)$

 U_{N-1} est une fonction polynôme, et $x \to U(x+N)$ est continue en -N (puisque U) est continue en 0, donc $x \to U_{N-1}(x) + U(x+N)$ est continue, donc bornée au voisinage de -N. Donc $U(x) \sim \frac{1}{x \rightarrow -N}$

1.5

1.5.1 Pour
$$x > -1$$
: $U'(x) = -2 \sum_{n=1}^{+\infty} \frac{1}{(n+x)^3} < 0$

1.5.2 Pour
$$x > 0$$
, $n \in N^*$ et $t \in [x + n - 1, x + n]$ on a: $\frac{1}{(t+1)^2} \le \frac{1}{(x+n)^2} \le \frac{1}{t^2}$ donc
$$\int_{x+n-1}^{x+n} \frac{dt}{(t+1)^2} = \int_{x+n}^{x+n+1} \frac{dt}{t^2} \le \frac{1}{(x+n)^2} \le \int_{x+n-1}^{x+n} \frac{dt}{t^2}$$

d'où pour
$$N \in N$$
, d'après la relation de Chasles :
$$\int_{x+1}^{x+1+N} \frac{dt}{t^2} \le \sum_{n=1}^{N} \frac{dt}{t^2} \le \int_{x}^{N} \frac{dt}{t^2}.$$

D'où, en faisant tendre N vers $+\infty$ puisque les intégrales convergent:

$$\int_{x+1}^{+\infty} \frac{dt}{t^2} \le U(x) \le \int_{x}^{+\infty} \frac{dt}{t^2}$$

On obtient alors
$$\frac{1}{x+1} \le U(x) \le \frac{1}{x}$$
 d'où $U(x) \sim \frac{1}{x \to +\infty}$

I.6 Pour
$$x \in D$$
, on a $\frac{x}{2} \in D$ et $\frac{x-1}{2} \in D$. De plus $U(\frac{x}{2}) = \sum_{n=1}^{+\infty} \frac{4}{(x+2n)^2}$ et

$$U(\frac{x-1}{2}) = \sum_{n=1}^{+\infty} \frac{4}{(x+2n-1)^2}$$

d'où le résultat

PARTIE II

II.1.1
$$e^t - 1 \sim t \, \mathsf{donc} \, f_p(t) \sim t^p$$

II.1.1
$$e^t - 1 \sim t \operatorname{donc} f_p(t) \sim t^p$$

Si $p \in N^*$, alors $\lim_{t \to 0} f_p(t) = 0$ et $\lim_{t \to 0} f_0(t) = 1$

I.1.2
$$f_p(t) \sim \frac{t^{p+1}}{e^t}$$

II.2.1
$$t \to f_0(t)e^{-xt}$$
 est positive continue sur $[0, +\infty[$.

De plus
$$f_0(t)e^{-xt} \sim te^{-(x+1)t}$$

Donc, si
$$x \le -1$$
, alors $\lim_{t \to +\infty} te^{-(x+1)t} = +\infty$, donc l'intégrale diverge grossièrement.

Si
$$x>-1$$
 alors $te^{-(x+1)t}=o_{t\to +\infty}\left(\frac{1}{t^2}\right)$ d'après les croissances comparée, et donc l'intégrale converge.

II.2.2 f_p est positive et l'exponentielle croissante, d'où pour tout $t \ge 0$ et

$$x \ge a$$
: $0 \le f_p(t)e^{-xt} \le f_p(t)e^{-at}$ puisque $-xt \le -at$

On a
$$f_p(t)e^{-xt} \sim t^{p+1}e^{-(x+1)t}$$
 donc d'après les croissances comparées, pour

$$x > -1$$
: $f_p(t)e^{-xt} = o_{t \to +\infty}\left(\frac{1}{t^2}\right)$ ce qui donne l'intégrabilité sur $]0, +\infty[$ de $t \to f_p(t)e^{-xt}$ qui est postive et continue.

II.2.3 On pose
$$u(x,t) = f_0(t)e^{-xt}$$
, pour $t \ge 0$ et $x > -1$

$$u$$
 admet des dérivées partielles par rapport à x à tout ordre $p \in N^*$ et $\frac{\partial^p u}{\partial x^p}(x,t)=(-1)^p t^p f_0(t) e^{-xt}=(-1)^p f_p(t) e^{-xt}$

De plus $t \to \frac{\partial^p u}{\partial x^p}(x,t)$ est continue sur $[0,+\infty[$ et pour $x \ge a$ et $t \in [0,+\infty[$ $\left|\frac{\partial^p u}{\partial x^p}(x,t)\right| = f_p(t)e^{-xt} \le f_p(t)e^{-at}$

Comme $t \rightarrow f_p(t)e^{-at}$ est intégrable, on en déduit que f est de classe C^p sur tout

 $[a, +\infty[$ avec a > -1(puisque bien sûr la continuité et la condition de domination de $t \to \frac{\partial^k u}{\partial x^k}(x, t)$ vaut pour tout entier k compris entre 1 et p).

Par extension de l'intervalle, φ est de classe C^{∞} sur $]-1,+\infty[$ et pour tout x de $]-1,+\infty[$, ona $\varphi^{(p)}(x)=\int_0^{+\infty}(-1)^pf_p(t)e^{-xt}dt$

II. 2. 4 On a par convexité de l'exponentielle : $0 < e^t - 1 \le t$ pour tout t > 0, donc $0 \le f_0(t)e^{-xt} \le e^{-xt}$ pour tout $t \ge 0$

Pour x > 0, on a donc $0 \le \varphi(x) \le \int_0^{+\infty} e^{-xt} dt = \frac{1}{x}$ (intégrale convergente)

Par encadrement, on a donc $\lim_{x\to +\infty} \varphi(x) = 0$

II.3

II.3.1 Pour
$$x > -1$$
, ona $\varphi(x) - \varphi(x+1) = \int_0^{+\infty} \frac{t(e^{-xt} - e^{-(x+1)t})}{e^t - 1} dt = \int_0^{+\infty} te^{-(x+1)t} dt = \boxed{\frac{1}{(x+1)^2}}$ (on

effectue une intégration par parties dans cette dernière intégrale)

II.3.2 On pose pour
$$x > -1$$
 $h(x) = U(x) - \varphi(x)$.

On a $U(x) = \frac{1}{(x+1)^2} + U(x+1)$. Donc h est périodique de période 1.

D'autre part , on a d'après la question 1.5.2 $\lim_{x \to +\infty} U(x) = 0$ donc $\lim_{x \to +\infty} h(x) = 0$

Pour tout x > -1 et tout entier naturel n, on a donc h(x+n) = h(x). Comme $\lim_{n \to +\infty} h(x+n) = 0$ on a donc h(x) = 0 et $U(x) = \varphi(x)$

II.3.3 En égalant les expressions trouvées pour les dérivées d'ordre p-2 de U et φ ,

on obtient donc:

$$\sum_{n=1}^{+\infty} \frac{1}{(n+x)^p} = \frac{1}{(p-1)!} \int_0^{+\infty} \frac{t^{p-1}e^{-xt}}{e^t - 1} dt$$

PARTIE III

III.1 g est 2π périodique continue sur $]-\pi,\pi[$ et $\lim_{\pi^-}g=\lim_{-\pi^+}g.$ Donc, par 2π -périodicité g est continue sur R

D'autre part, g est dérivable sur $]0,\pi[$ et g'(x)=1 pour tout $x\in]0,\pi[$. g' admet des limites finies en 0 par valeurs supérieures et en π par valeurs inférieures et est donc par parité et 2π périodicité de classe C^1 par morceaux sur R. D'après le théorème de Dirichlet, g est donc en tout point réel la somme de sa série de Fourier, laquelle converge normalement.

III.2

III.2.1 Comme g est paire, on a $b_n(g) = 0$ pour tout $n \in N^*$

III.2.2 Comme g est paire, on a $a_n(g) = \frac{2}{\pi} \int_0^{\pi} (\frac{\pi}{2} - t) \cos nt dt$

Pour n non nul, en intégrant par parties:

$$a_n(g) = -\frac{2}{\pi n} \left[\left(\frac{\pi}{2} - t \right) \sin nt \right]_0^{\pi} - \frac{2}{\pi n} \int_0^{\pi} \sin nt dt = -\frac{2}{\pi n^2} \left[\cos nt \right]_0^{\pi} = \frac{-2[(-1)^n - 1]}{\pi n^2}$$

Si n est pair non nul, on a donc $a_n(g)=0$ et si n est impair, n=2k-1 ($k\in N^*$), on a

donc
$$a_{2p+1}(g) = \frac{4}{\pi(2k-1)^2}$$

Enfin $a_0(g) = \frac{2}{\pi} \int_0^{\pi} (\frac{\pi}{2} - t) dt = -\frac{2}{\pi} [(\frac{\pi}{2} - t)^2]_0^{\frac{\pi}{2}} = 0$

III.3.

III.3.1 On a donc pour tout
$$t$$
 réel: $g(t) = \frac{4}{\pi} \sum_{k=1}^{+\infty} \frac{1}{(2k-1)^2} \cos(2k-1)t$

Pour
$$t = 0$$
, on obtient donc: $\frac{\pi}{2} = \frac{4}{\pi} \sum_{k=1}^{+\infty} \frac{1}{(2k-1)^2} donc$ $\sum_{k=1}^{+\infty} \frac{1}{(2k-1)^2} = \frac{\pi^2}{8}$

II.3.2 On a
$$U(-\frac{1}{2}) = \sum_{n=1}^{+\infty} \frac{1}{(n-\frac{1}{2})^2} = 4 \sum_{n=1}^{+\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{2}$$

En utilisant la question I.6 avec x=0, on a donc $\frac{1}{4}[U(0)+U(-\frac{1}{2})]=U(0)$, d'où $U(0)=\frac{\pi^2}{6}$

III.4 Comme g est continue, on peut appliquer la relation de Parseval et donc

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} g^{2}(t)dt = \frac{8}{\pi^{2}} \sum_{k=1}^{+\infty} \frac{1}{(2k-1)^{4}}$$

$$\text{Or } \int_{-\pi}^{\pi} g^{2}(t)dt = 2 \int_{0}^{\pi} \left(\frac{\pi}{2} - t\right)^{2} dt = -\frac{4}{3} \left[\left(\frac{\pi}{2} - t\right)^{3} \right]_{0}^{\pi} = \frac{4}{3} \frac{\pi^{2}}{8} = \boxed{\frac{\pi^{2}}{6}}$$

$$\text{Donc } \sum_{k=1}^{+\infty} \frac{1}{(2k-1)^{4}} = \frac{\pi^{4}}{96}$$

On sait que la série $\sum \frac{1}{n^4}$ converge et en regroupant les termes pour les valeurs de n paires et impaires, on a :

$$\sum_{n=1}^{+\infty} \frac{1}{n^4} = \sum_{k=1}^{+\infty} \frac{1}{(2k-1)^4} + \sum_{k=1}^{+\infty} \frac{1}{(2k)^4} = \sum_{k=1}^{+\infty} \frac{1}{(2k-1)^4} + \frac{1}{16} \sum_{n=1}^{+\infty} \frac{1}{n^4}$$

$$\text{Donc} \left[\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{16}{15} \sum_{k=1}^{+\infty} \frac{1}{(2k-1)^4} = \frac{\pi^4}{90} \right]$$

III.5

III.5.1 g est continue sur R donc admet une unique primitive G prenant la valeur 0 en 0

On a pour tout x réel $G(x) = \int_0^x g(t)dt$. Donc $G(-x) = \int_0^{-x} g(t)dt$. En effectuant le changelment de variables de classe C^1 u = -t (donc dt = -du), on obtient $G(-x) = -\int_0^x g(-u)du = -\int_0^x g(u)du = -G(x)$. Donc G est impaire

De même ,pour tout x réel:

$$G(x+2\pi) = \int_0^{x+2\pi} g(t)dt = \int_0^x g(t)dt + \int_x^{x+2\pi} g(t)dt = G(x) + \int_0^{2\pi} g(t)dt = G(x) + \pi a_0 = G(x)$$

Donc G est 2π – périodique

III.5.2 On a $a_n(G') = nb_n(G)$, donc pour n non nul: $b_n(G) = \frac{1}{n}a_n(G') = \frac{1}{n}a_n(g)$

Si n est pair, on a donc $b_n(G)=0$ et si n est impair, n=2k-1, on a $b_{2k-1}(G)=\frac{4}{\pi(2k-1)^3}$

$$b_{2k-1}(G) = \frac{4}{\pi(2k-1)^3}$$

On a d'autre part $a_n(G) = 0$ pour tout n puisque G est impaire.

G est de classe C^1 puisque dérivable et que G' = g est continue. G est donc en tout point la somme de sa série de Fourier.

III.5.3

Comme G est continue, on peut appliquer la relation de Parseval et

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} G^2(t)dt = \frac{1}{2} \sum_{k=1}^{+\infty} \frac{16}{\pi^2 (2k-1)^6}$$

Or
$$\int_{-\pi}^{\pi} G^2(t)dt = 2\int_{0}^{\pi} G^2(t)dt$$

Pour
$$t \in [0, \pi]$$
 on a $G(t) = -\frac{1}{2}(\frac{\pi}{2} - t)^2 + \frac{\pi^2}{8}$.

Donc
$$\int_0^{\pi} G^2(t)dt = \int_0^{\pi} \left(\frac{\pi^4}{64} - \frac{\pi^2}{8} \left(\frac{\pi}{2} - t\right)^2 + \frac{1}{4} \left(\frac{\pi}{2} - t\right)^4\right) dt =$$

Pour
$$t \in [0, \pi]$$
 on a $G(t) = -\frac{1}{2} \left(\frac{\pi}{2} - t\right)^2 + \frac{\pi^2}{8}$.
Donc $\int_0^{\pi} G^2(t) dt = \int_0^{\pi} \left(\frac{\pi^4}{64} - \frac{\pi^2}{8} \left(\frac{\pi}{2} - t\right)^2 + \frac{1}{4} \left(\frac{\pi}{2} - t\right)^4\right) dt = \left[\frac{\pi^4 t}{64} + \frac{\pi^2}{24} \left(\frac{\pi}{2} - t\right)^3 - \frac{1}{20} \left(\frac{\pi}{2} - t\right)^5\right]_0^{\pi} = 2\pi^5 \left[\frac{1}{64} - \frac{1}{192} + \frac{1}{320}\right] = \pi^5 \left(\frac{1}{160} + \frac{1}{96}\right) = \frac{16\pi^5}{960}$

Donc
$$\frac{16\pi^4}{960} = \frac{16}{\pi^2} \sum_{k=1}^{+\infty} \frac{1}{(2k-1)^6} \text{ donc} \left[\sum_{k=1}^{+\infty} \frac{1}{(2k-1)^6} = \frac{\pi^6}{960} \right]$$

On a alors, puisque
$$\sum \frac{1}{n^6}$$
 converge: $\sum_{n=1}^{+\infty} \frac{1}{n^6} = \frac{1}{64} \sum_{n=1}^{+\infty} \frac{1}{n^6} + \sum_{k=1}^{+\infty} \frac{1}{(2k-1)^6}$

D'où
$$\sum_{k=1}^{+\infty} \frac{1}{n^6} = \frac{64}{63} \sum_{k=1}^{+\infty} \frac{1}{(2k-1)^6} = \frac{64}{63} \frac{\pi^6}{960} = \boxed{\frac{\pi^6}{945}}$$