CCP 2004 PC Maths 1

|I|1) a) On note (e_1, e_2, e_3, e_4) la base canonique de \mathbb{R}^4 .

Base de ker $M: (e_2 - e_1, e_3 - e_1)$; base de ker ${}^tM: (e_1 + e_2 - e_3, e_4 - e_2)$; pas d'inclusion.

b) Base de Im $M: (e_1+e_3, -e_1+e_2+e_4)$; base de Im ${}^tM: (e_1+e_2+e_3, e_4)$; pas d'inclusion.

2) tAA est carrée d'ordre p; si le produit est possible, $\ker(A) \subset \ker(BA)$ donc $ker(A) \subset ker({}^tAA)$.

Réciproquement : $X \in \ker(\ ^tAA) \Leftrightarrow \ ^tAAX = 0 \Rightarrow \ ^tX \ ^tAAX = 0 \Rightarrow$ $||AX||^2 = 0 \Rightarrow AX = 0 \Rightarrow X \in \ker(A)$

donc on a : $\ker(A) = \ker({}^tAA)$. En remplaçant A par tA : $\ker({}^tA) = \ker(A{}^tA)$

b) Appliquons le théorème du rang : $rg({}^{t}AA) = p - \dim(\ker({}^{t}AA)) =$ $p - \dim(\ker(A)) = rg(A)$.

De même : $rg(A^{t}A) = rg(^{t}A)$. Mais $rg(^{t}A) = rg(A)$ donc : $rg(^{t}AA) = rg(A^{t}A) = rg(A)$

c) Si le produit est possible, $\operatorname{Im}(BA) \subset \operatorname{Im}(B)$ donc $\operatorname{Im}({}^tA\overline{A}) \subset \operatorname{Im}({}^tA)$; d'après b) ils ont même dimension

donc $\operatorname{Im}({}^tAA) \subset \operatorname{Im}({}^tA)$; de même : $\operatorname{Im}(A{}^tA) \subset \operatorname{Im}(A)$.

3) Soit $c_{i,j}$ le terme de la ligne i , colonne j de ${}^tBB: c_{i,j} = \sum_{k=1}^q b_{k,i}b_{k,j} = <$

 $x_i, x_j > \text{donc}$ BB = G

D'après 2)c) , rg(G) = rg(B) et rg(B) = rg(S) : rang de la famille $(x_1,...,x_q)$.

b) G est symétrique réelle donc diagonalisable . Soit λ une valeur propre de G et X un vecteur propre associé :

 $GX = \lambda X \Rightarrow \hat{t}X \hat{B}BX = \lambda tXX \Rightarrow \|BX\|^2 = \lambda \|X\|^2$; X n'est pas nul donc $||X||^2 \neq 0$, donc $\lambda \geq 0$

c) det(G) est égal au produit de ses valeurs propres, celles-ci sont toutes positives donc $det(G) \ge 0$

$$\det(G) \neq 0 \Leftrightarrow rg(G) = q \Leftrightarrow rg(B) = q \Leftrightarrow rg(S) = q \Leftrightarrow (x_1, ..., x_q) \text{ est libre }.$$

$$\det(G) \neq 0 \Leftrightarrow rg(G) = q \Leftrightarrow rg(S) = q \Leftrightarrow (x_1, ..., x_q) \text{ est libre }.$$

$$\det(G) \neq 0 \Leftrightarrow rg(G) = \begin{vmatrix} |x_1||^2 & \langle x_1, x_2 \rangle \\ \langle x_2, x_1 \rangle & ||x_2||^2 \end{vmatrix} \geq 0 \Rightarrow (\langle x_1, x_2 \rangle)^2 \leq ||x_1||^2 ||x_2||^2$$

et on a égalité ssi (x_1, x_2) est liée.

4) Posons $x_j'=x_j+\sum_{k\neq j}\alpha_kx_k$. Notons $S~'=(x_1,...,x_j',...,x_q)$. S et S~' engendrent le même SEV .

Notons B' la matrice des composantes de $(x_1,...,x'_i,...,x_q)$ dans la base $(e_1,...,e_r)$ et $G' = {}^tB'B'$.

On remplace la colonne C'_j de $\det(G')$ par $C'_j - \sum_{k \neq j} \alpha_k C'_k$:

$$< x_i, x_j' > -\sum_{k \neq j} \alpha_k < x_i, x_k > = < x_i, x_j >$$
(pour $i = j$ on a en premier vecteur x_j')

On remplace la ligne L_j'' du déterminant obtenu par $L_j'' - \sum_{k \neq j} \alpha_k L_k''$ et on retrouve det(G).

<u>Autre méthode</u>:

 1^{er} cas : S est libre . Alors $rg(S) = q \Rightarrow r = q$ donc B est carrée et donc $det(G) = [det(B)]^2$. Or

 $\gamma(x_1,...,x_j,...,x_q)=0$

5) a) $\gamma(x_1,...,x_q) = \gamma(h_1 + p_L(x_1),...,x_q) = \gamma(h_1,...,x_q)$ en appliquant 4) car $p_L(x_1)$ est une combinaison

linéaire de $x_2, ..., x_q$. Or $h_1 \in L^{\perp}$ donc $\langle h_1, x_j \rangle = 0$ pour tout $j \geq 2$. La première ligne (ou colonne) de

 $\gamma(h_1,...,x_q)$ a tous ses termes nuls sauf le premier qui vaut $\langle h_1,h_1\rangle$. Les termes des lignes ou colonnes

suivants sont $\langle x_i, x_j \rangle$ avec $i \geq 2$ et $j \geq 2$. En développant ce déterminant suivant la première colonne on

obtient bien : $|\gamma(x_1, ..., x_q) = ||h_1||^2 \gamma(x_2, ..., x_q)$

b) i) h_1 est orthogonal à $p_L(x_1)$, en appliquant le théorème de Pythagore : $||x_1||^2 = ||h_1||^2 + ||p_L(x_1)||^2$ et

$$\gamma(x_1) = ||x_1||^2 \operatorname{donc} ||h_1||^2 \le \gamma(x_1) \cdot \gamma(x_2, ..., x_q) \ge 0 \operatorname{donc} : \gamma(x_1, ..., x_q) \le \gamma(x_1) \gamma(x_2, ..., x_q)$$

Si S est libre alors les termes sont non nuls donc l'égalité a lieu si et seulement $\text{si } ||h_1||^2 = \gamma(x_1) \text{ ssi } p_L(x_1) = 0 ,$

ssi $x_1 \in L^{\perp}$. Mais si S est liée , cette condition n'est plus nécéssaire

- ii) En supposant <u>S libre</u> , on procède par récurrence : $\gamma(x_{q-1},x_q) \leq \gamma(x_{q-1}) \; \gamma(x_q)$, égalité ssi $x_{q-1} \perp x_q$; etc.
- 6) Les vecteurs colonnes de A sont libres puisque $A \in GL_n(\mathbb{R})$. Posons $G = AA : \det(G) = \gamma(c_1, ..., c_n)$

d'après 3) et $\det(G) = [\det(A)]^2$; d'après 5)b) : $\gamma(c_1, ..., c_n) \le ||c_1||^2 ... ||c_n||^2$

d'où $|\det(A)| \leq \prod_{k=1}^n \|c_k\|$ et l'égalité a lieu ssi $c_1,...,c_n$ sont 2 à 2 orthogonaux . b) $\|c_k\|^2 = \prod_{i=1}^n (a_{i,j})^2 \leq n$ donc $\underline{\det(A) \leq (\sqrt{n})^n}$. Si l'égalité a lieu , alors les vecteurs colonnes sont 2 à 2 orthogonaux . De plus , $\|c_k\|^2 = \prod_{i=1}^n (a_{i,j})^2 = n$ et $(a_{i,j})^2 \leq 1$ donc

 $\forall i, j , (a_{i,j})^2 = 1 \Rightarrow a_{i,j} = \pm 1 .$

Réciproque : si les vecteurs colonnes sont 2 à 2 orthogonaux alors $|\det(A)| =$ $\prod_{k=1}^{n} \|c_k\| \text{ et si } \forall i, j , a_{i,j} = \pm 1$

alors $\forall k$, $\|c_k\|^2 = n$ donc on a bien $|\det(A)| = (\sqrt{n})^n$.

III 1) 8 Eléments de
$$H_2$$
: $\pm \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$; $\pm \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$; $\pm \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$; $\pm \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$ 2)a) En notant c_j les vecteurs colonnes de A et $B = {}^t AA$, on a : $b_{i,j} = \sum_{j=1}^n a_{i,j} = a_{i,j} = a_{i,j}$

 $\sum_{k=1}^{n} a_{k,i} a_{k,j} = \langle c_i, c_j \rangle.$

 $\sum_{k=1}^{k=1} a_{i,k} a_{i,j} = 0 \text{ . Si } i = j : b_{i,i} = \sum_{k=1}^{n} (a_{k,i})^2 = n \text{ donc } \begin{bmatrix} {}^t AA = nI_n \end{bmatrix}$ b) $A = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -\sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$ vérifie ${}^t AA = 2I_2$ mais $A \notin H_2$ donc la réciproque

c) Si on impose: $\forall i, j, a_{i,j} = \pm 1$; alors ${}^tAA = nI_n$ implique que $A_0 = \frac{1}{\sqrt{n}}A$ est orthogonale donc les vecteurs

colonnes de A sont 2 à 2 orthogonaux , donc $A \in H_n$

3) Posons $A' = {}^t P^{(\sigma)} A$. $\forall i, j$, $a'_{i,j} = \sum_{k=1}^n P_{k,i} a_{k,j} = \sum_{k=1}^n \delta_{k,\sigma(i)} a_{k,j} = \sum_{k=1}^n$ $a_{\sigma(i),i}$. La ligne i de A' est la

ligne $\sigma(i)$ de A. ${}^tP^{(\sigma)}A$ est obtenue en faisant la permutation σ sur les lignes de A.

b) Posons $A'' = AP^{(\sigma)}$. $\forall i, j$, $a''_{i,j} = \sum_{k=1}^n a_{i,k} P_{k,j} = \sum_{k=1}^n a_{i,k} \delta_{k,\sigma(j)} = \sum_{k=1}^n a_{$ $a_{i,\sigma(j)}$. La colonne j de A'' est la

colonne $\sigma(j)$ de A. $AP^{(\sigma)}$ est obtenue en faisant la permutation σ sur les colonnes de A.

c) A'' vérifie les mêmes propriétés que A (colonnes 2 à 2 orthogonales, éléments dans $\{-1,1\}$) donc $A'' \in H_n$

Si $A \in H_n$ alors $\frac{1}{\sqrt{n}}A \in O_n$ donc sa transposée aussi : $\frac{1}{\sqrt{n}}^t A \in O_n \Rightarrow A^t A =$ nI_n et les éléments de tA sont

dans $\{-1,1\}$ donc d'après 2)c) : ${}^tA \in H_n$. On en déduit que ${}^tAP^{(\sigma)} \in H_n$, donc $t(tAP^{(\sigma)}) = tP^{(\sigma)}A \in H_n$.

Le produit $A\Delta$ s'obtient en multipliant la colonne j de A par $d_{j,j}$ pour tout j. Or $d_{j,j}=\pm 1$ donc les termes de $A\Delta$

sont dans $\{-1,1\}$ et pour $i \neq j : \langle c_i, c_j \rangle = 0 \Rightarrow \langle \pm c_i, \pm c_j \rangle = 0$ donc

$$A\Delta \in H_n$$
.
 ${}^tA \in H_n \Rightarrow {}^tA\Delta \in H_n \Rightarrow {}^t({}^tA\Delta) \in H_n \Rightarrow \Delta A \in H_n$.

4)
a) Les éléments de A et ceux de B
valent ± 1 , donc ceux de $A\otimes B$ aussi . Notons c_i les colonnes de B et V_i

celles de $A \otimes B$. Pour $i \neq j$: $\ < V_i, V_j > \ = a_{1,k} a_{1,l} < c_i, c_j > + a_{2,k} a_{2,l} <$ $c_i, c_j >= 0 \text{ car } < c_i, c_j >= 0 .$

Donc $A \otimes B \in H_{2n}$.

- b) $H_2 \neq \emptyset$, soit $A \in H_2$: on a $A_2 = A \otimes A \in H_4$ donc $A_3 = A \otimes A_2 \in H_8$ etc ... Donc $H_{2^n} \neq \emptyset$
- c) $A \in H_4$ telle que $\forall i$, $a_{i,1} = 1$, $a_{1,2} = a_{2,2} = 1$, $a_{3,2} = a_{4,2} = -1$ n'est pas de la forme $A \otimes B$.

5)a) $H_n \neq \emptyset$, soit $A \in H_n$. Soit $\Delta \in D_n$ to $\forall i$, $\delta_{i,i} = a_{i,1}$. Alors $B = \Delta A$ vérifie : $b_{i,1} = \delta_{i,i} a_{i,1} = 1$

pour tout i et $B \in H_n$. Notons c_j les colonnes de $B: \langle c_1, c_2 \rangle = 0 \Leftrightarrow$ $\sum_{k=1}^{n} b_{k,2} = 0 \text{ et } b_{k,2} = \pm 1 \text{ donc}$

 \tilde{l} a moitié vaut 1 et l'autre -1, donc n est pair.

b) Soit C la matrice obtenue en effectuant une permutation des lignes de B qui amène les termes positifs dans

les m premières lignes. D'après 3) $C \in H_n$. Les p.s. des colonnes 1 et 3;

 $\sum_{k=1}^{n} b_{k,3} = 0 \; ; \; \sum_{k=1}^{m} b_{k,3} - \sum_{k=m}^{n} b_{k,3} = 0 \; \text{donc} \; \sum_{k=1}^{m} b_{k,3} = 0 \; \text{donc}$ $m \; \text{est pair et} \; \underline{n = 4k}$

III 1) S est symétrique réelle donc diagonalisable et $\exists P \in O_n \ tq \ D =$ $P^{-1}\overline{SP} = {}^{t}PSP$ soit diagonale.

 $\forall X \in M_{n,1}(\mathbb{R}), \ ^tXSX = \ ^tX\ PD\ ^tPX = \ ^tYDY = d_{1,1}\left(y_1\right)^2 + d_{2,2}\left(y_2\right)^2 +$

 $\cdots + d_{n,n} (y_n)^2$ avec $Y = {}^t PX$ et $X \mapsto Y$ est bijective puisque P est inversible . $\forall X \neq 0$, ${}^t X S X > 0 \Leftrightarrow \forall Y \neq 0$, $d_{1,1} (y_1)^2 + d_{2,2} (y_2)^2 + \cdots + d_{n,n} (y_n)^2 > 0$ $0 \Leftrightarrow \forall i , d_{i,i} > 0$

2)a) ^tMM est symétrique réelle et comme on l'a vu en I, ses valeurs propres sont positives. De plus

 $\det({}^t MM) = \left[\det(M)\right]^2 \neq 0 \text{ donc } 0 \text{ n'est pas valeur propre de } {}^t MM$. Donc ${}^tMM \in S_n^{++}$.

 $\overline{\mathrm{b}}) \ \exists P \in O_n \ tq \ D = {}^tP \ {}^tMMP \ \mathrm{soit \ diagonale} \ , \ \mathrm{et} \ d_{i,i} > 0 \ . \ \mathrm{Soit} \ \Delta \ \mathrm{la}$ matrice diagonale tq : $\forall i$, $\delta_{i,i} = \sqrt{d_{i,i}}$

On a $D = \Delta^2$ donc en posant $S = P\Delta^{t}P$, on trouve : $tMM = S^2$, et $S \in S_n^{++} \operatorname{car} \forall i , \delta_{i,i} > 0 .$

 \overline{c} det $(S) = \delta_{1,1}...\delta_{n,n} \neq 0$ donc S est inversible. S est symétrique donc

$$^{t}(MS^{-1})MS^{-1} = S^{-1} \ ^{t}M \ MS^{-1} = S^{-1} \ S^{2}S^{-1} = I_{n} \ \text{donc} \ \boxed{MS^{-1} \in O_{n}}$$

d) On peut écrire , en notant $R=MS^{-1}$: M=RS avec $R\in O_n$ et $S \in S_n^{++}$.

3) Σ et D ont la même trace car elles sont semblables donc $Tr(\Sigma) = \sum_{i=1}^{n} \lambda_i$

b) $\exists P \in O_n \ tq \ D = P^{-1}\Sigma P$. $\Sigma = PDP^{-1} \Rightarrow Q\Sigma = QPDP^{-1} \Rightarrow Tr(Q\Sigma) = Tr(QPDP^{-1}) = Tr(P^{-1}QPD)$.

Posons $Q_1 = P^{-1}QP$. P et Q sont orthogonales donc Q_1 aussi et $Tr(Q\Sigma) = Tr(Q_1D)$

 $Tr(Q_1D) = \sum_{i=1}^n q_{i,i}^{(1)} \lambda_i \text{ Pour tout } i \text{ , } \lambda_i \geq 0 \text{ et } q_{i,i}^{(1)} \leq 1 \text{ car } Q_1 \text{ étant orthogonale : } \sum_{j=1}^n \left[q_{j,i}^{(1)}\right]^2 = 1$

en particulier $\left|q_{i,i}^{(1)}\right| \leq 1$ donc $q_{i,i}^{(1)} \leq 1$. On a donc $Tr(Q_1D) \leq \sum_{i=1}^n \lambda_i$ d'où $Tr(Q\Sigma) \leq Tr(\Sigma)$.

c) Pour $Q = I_n$ on a égalité donc sup $Tr(Q\Sigma) = Tr(\Sigma)$

4)a) Il y a $\frac{1}{2}n(n+1)$ termes au-dessus de la diagonale , tous égaux à ± 1 donc $f(A) \leq \frac{1}{2}n(n+1)$.

L'ensemble $\{f(A), A \in H_n\}$ est une partie majorée de \mathbb{R} donc admet une borne supérieure .

b) Soit B = AT: $b_{i,i} = \sum_{j=i}^{n} a_{i,j}$ donc Tr(B) = f(A)

c) $\det(T)=1$ donc $T\in GL_n(\mathbb{R})$. D'après 2) $\exists R\in O_n$ et $S\in S_n^{++}$ tq T=RS. Alors f(A)=Tr(ARS). Posons $A'=\frac{1}{\sqrt{n}}A$. On a vu en II que $A'\in O_n$ et $f(A)=Tr(\sqrt{n}A'RS)=$

 $A'R \in O_n$ et $S \in S_n^+$ donc d'après 3) : $f(A) \leq \sqrt{n}Tr(S)$. Vrai $\forall A \in H_n$ donc $\alpha_n \leq \sqrt{n} Tr(S)$

d) $\forall A \in H_2$, $f(A) \in \{-3, -1, 1, 3\}$ donc $\alpha_2 = 3$. D'après 2) Tr(S) = 1 $\sqrt{d_1} + \sqrt{d_2}$ où d_1 et d_2 sont les

valeurs propres de ${}^tTT=\begin{pmatrix}2&1\\1&1\end{pmatrix}$. $d_1=\frac{3-\sqrt{5}}{2}=\left(\frac{\sqrt{5}-1}{2}\right)^2$; $d_2=$ $\frac{3+\sqrt{5}}{2} = \left(\frac{\sqrt{5}+1}{2}\right)^2$ d'où $Tr(S) = \sqrt{5}$

On vérifie bien que $3 < \sqrt{2}\sqrt{5}$